Spaces:
Build error
Build error
File size: 9,038 Bytes
3e5595b 9938c27 3e5595b 9938c27 3e5595b 9938c27 3e5595b dc53b3a 3e5595b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
//This is Concedo's shitty adapter for adding python bindings for llama
//Considerations:
//Don't want to use pybind11 due to dependencies on MSVCC
//ZERO or MINIMAL changes as possible to main.cpp - do not move their function declarations here!
//Leave main.cpp UNTOUCHED, We want to be able to update the repo and pull any changes automatically.
//No dynamic memory allocation! Setup structs with FIXED (known) shapes and sizes for ALL output fields
//Python will ALWAYS provide the memory, we just write to it.
#include <cassert>
#include <cstring>
#include <fstream>
#include <regex>
#include <iostream>
#include <iterator>
#include <queue>
#include <string>
#include <math.h>
#include "expose.h"
#include "model_adapter.cpp"
extern "C"
{
std::string platformenv, deviceenv;
//return val: 0=fail, 1=(original ggml, alpaca), 2=(ggmf), 3=(ggjt)
static FileFormat file_format = FileFormat::BADFORMAT;
bool load_model(const load_model_inputs inputs)
{
std::string model = inputs.model_filename;
lora_filename = inputs.lora_filename;
lora_base = inputs.lora_base;
int forceversion = inputs.forceversion;
if(forceversion==0)
{
file_format = check_file_format(model.c_str());
}
else
{
printf("\nWARNING: FILE FORMAT FORCED TO VER %d\nIf incorrect, loading may fail or crash.\n",forceversion);
file_format = (FileFormat)forceversion;
}
//first digit is whether configured, second is platform, third is devices
int cl_parseinfo = inputs.clblast_info;
std::string usingclblast = "GGML_OPENCL_CONFIGURED="+std::to_string(cl_parseinfo>0?1:0);
putenv((char*)usingclblast.c_str());
cl_parseinfo = cl_parseinfo%100; //keep last 2 digits
int platform = cl_parseinfo/10;
int devices = cl_parseinfo%10;
platformenv = "GGML_OPENCL_PLATFORM="+std::to_string(platform);
deviceenv = "GGML_OPENCL_DEVICE="+std::to_string(devices);
putenv((char*)platformenv.c_str());
putenv((char*)deviceenv.c_str());
executable_path = inputs.executable_path;
if(file_format==FileFormat::GPTJ_1 || file_format==FileFormat::GPTJ_2 || file_format==FileFormat::GPTJ_3 || file_format==FileFormat::GPTJ_4 || file_format==FileFormat::GPTJ_5)
{
printf("\n---\nIdentified as GPT-J model: (ver %d)\nAttempting to Load...\n---\n", file_format);
ModelLoadResult lr = gpttype_load_model(inputs, file_format);
if (lr == ModelLoadResult::RETRY_LOAD)
{
if(file_format==FileFormat::GPTJ_1)
{
//if we tried 1 first, then try 3 and lastly 2
//otherwise if we tried 3 first, then try 2
file_format = FileFormat::GPTJ_4;
printf("\n---\nRetrying as GPT-J model: (ver %d)\nAttempting to Load...\n---\n", file_format);
lr = gpttype_load_model(inputs, file_format);
}
if (lr == ModelLoadResult::RETRY_LOAD)
{
file_format = FileFormat::GPTJ_3;
printf("\n---\nRetrying as GPT-J model: (ver %d)\nAttempting to Load...\n---\n", file_format);
lr = gpttype_load_model(inputs, file_format);
}
//lastly try format 2
if (lr == ModelLoadResult::RETRY_LOAD)
{
file_format = FileFormat::GPTJ_2;
printf("\n---\nRetrying as GPT-J model: (ver %d)\nAttempting to Load...\n---\n", file_format);
lr = gpttype_load_model(inputs, file_format);
}
}
if (lr == ModelLoadResult::FAIL || lr == ModelLoadResult::RETRY_LOAD)
{
return false;
}
else
{
return true;
}
}
else if(file_format==FileFormat::GPT2_1||file_format==FileFormat::GPT2_2||file_format==FileFormat::GPT2_3||file_format==FileFormat::GPT2_4)
{
printf("\n---\nIdentified as GPT-2 model: (ver %d)\nAttempting to Load...\n---\n", file_format);
ModelLoadResult lr = gpttype_load_model(inputs, file_format);
if (lr == ModelLoadResult::RETRY_LOAD)
{
file_format = FileFormat::GPT2_3;
printf("\n---\nRetrying as GPT-2 model: (ver %d)\nAttempting to Load...\n---\n", file_format);
lr = gpttype_load_model(inputs, file_format);
}
if (lr == ModelLoadResult::RETRY_LOAD)
{
file_format = FileFormat::GPT2_2;
printf("\n---\nRetrying as GPT-2 model: (ver %d)\nAttempting to Load...\n---\n", file_format);
lr = gpttype_load_model(inputs, file_format);
}
if (lr == ModelLoadResult::FAIL || lr == ModelLoadResult::RETRY_LOAD)
{
return false;
}
else
{
return true;
}
}
else if(file_format==FileFormat::RWKV_1 || file_format==FileFormat::RWKV_2)
{
printf("\n---\nIdentified as RWKV model: (ver %d)\nAttempting to Load...\n---\n", file_format);
ModelLoadResult lr = gpttype_load_model(inputs, file_format);
if (lr == ModelLoadResult::FAIL || lr == ModelLoadResult::RETRY_LOAD)
{
return false;
}
else
{
return true;
}
}
else if(file_format==FileFormat::NEOX_1 || file_format==FileFormat::NEOX_2 || file_format==FileFormat::NEOX_3 || file_format==FileFormat::NEOX_4 || file_format==FileFormat::NEOX_5 || file_format==FileFormat::NEOX_6 || file_format==FileFormat::NEOX_7)
{
printf("\n---\nIdentified as GPT-NEO-X model: (ver %d)\nAttempting to Load...\n---\n", file_format);
ModelLoadResult lr = gpttype_load_model(inputs, file_format);
if (lr == ModelLoadResult::RETRY_LOAD)
{
if(file_format==FileFormat::NEOX_2)
{
file_format = FileFormat::NEOX_3;
printf("\n---\nRetrying as GPT-NEO-X model: (ver %d)\nAttempting to Load...\n---\n", file_format);
lr = gpttype_load_model(inputs, file_format);
}
else
{
file_format = FileFormat::NEOX_5;
printf("\n---\nRetrying as GPT-NEO-X model: (ver %d)\nAttempting to Load...\n---\n", file_format);
lr = gpttype_load_model(inputs, file_format);
}
}
if (lr == ModelLoadResult::RETRY_LOAD)
{
file_format = FileFormat::NEOX_1;
printf("\n---\nRetrying as GPT-NEO-X model: (ver %d)\nAttempting to Load...\n---\n", file_format);
lr = gpttype_load_model(inputs, file_format);
}
if (lr == ModelLoadResult::FAIL || lr == ModelLoadResult::RETRY_LOAD)
{
return false;
}
else
{
return true;
}
}
else if(file_format==FileFormat::MPT_1)
{
printf("\n---\nIdentified as MPT model: (ver %d)\nAttempting to Load...\n---\n", file_format);
ModelLoadResult lr = gpttype_load_model(inputs, file_format);
if (lr == ModelLoadResult::FAIL || lr == ModelLoadResult::RETRY_LOAD)
{
return false;
}
else
{
return true;
}
}
else
{
printf("\n---\nIdentified as LLAMA model: (ver %d)\nAttempting to Load...\n---\n", file_format);
ModelLoadResult lr = gpttype_load_model(inputs, file_format);
if (lr == ModelLoadResult::FAIL || lr == ModelLoadResult::RETRY_LOAD)
{
return false;
}
else
{
return true;
}
}
}
generation_outputs generate(const generation_inputs inputs, generation_outputs &output)
{
return gpttype_generate(inputs, output);
}
const char* new_token(int idx) {
if (generated_tokens.size() <= idx || idx < 0) return nullptr;
return generated_tokens[idx].c_str();
}
int get_stream_count() {
return generated_tokens.size();
}
bool has_finished() {
return generation_finished;
}
float get_last_eval_time() {
return last_eval_time;
}
float get_last_process_time() {
return last_process_time;
}
const char* get_pending_output() {
return gpttype_get_pending_output().c_str();
}
bool abort_generate() {
return gpttype_generate_abort();
}
}
|