Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,13 +1,13 @@
|
|
| 1 |
import os
|
| 2 |
-
import json
|
| 3 |
import gradio as gr
|
| 4 |
import huggingface_hub
|
| 5 |
import numpy as np
|
| 6 |
import onnxruntime as rt
|
| 7 |
import pandas as pd
|
| 8 |
from PIL import Image
|
| 9 |
-
from huggingface_hub import
|
| 10 |
|
|
|
|
| 11 |
from translator import translate_texts
|
| 12 |
|
| 13 |
# ------------------------------------------------------------------
|
|
@@ -17,8 +17,14 @@ MODEL_REPO = "SmilingWolf/wd-eva02-large-tagger-v3"
|
|
| 17 |
MODEL_FILENAME = "model.onnx"
|
| 18 |
LABEL_FILENAME = "selected_tags.csv"
|
| 19 |
|
| 20 |
-
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
# ------------------------------------------------------------------
|
| 24 |
# Tagger 类 (全局实例化)
|
|
@@ -58,40 +64,53 @@ class Tagger:
|
|
| 58 |
|
| 59 |
# ------------------------- preprocess -------------------------
|
| 60 |
def _preprocess(self, img: Image.Image) -> np.ndarray:
|
| 61 |
-
if img is None:
|
| 62 |
-
|
|
|
|
|
|
|
| 63 |
size = max(img.size)
|
| 64 |
canvas = Image.new("RGB", (size, size), (255, 255, 255))
|
| 65 |
canvas.paste(img, ((size - img.width) // 2, (size - img.height) // 2))
|
| 66 |
if size != self.input_size:
|
| 67 |
canvas = canvas.resize((self.input_size, self.input_size), Image.BICUBIC)
|
| 68 |
-
return np.array(canvas)[:, :, ::-1].astype(np.float32)
|
| 69 |
|
| 70 |
# --------------------------- predict --------------------------
|
| 71 |
def predict(self, img: Image.Image, gen_th: float = 0.35, char_th: float = 0.85):
|
| 72 |
-
if self.model is None:
|
|
|
|
| 73 |
inp_name = self.model.get_inputs()[0].name
|
| 74 |
outputs = self.model.run(None, {inp_name: self._preprocess(img)[None, ...]})[0][0]
|
| 75 |
|
| 76 |
res = {"ratings": {}, "general": {}, "characters": {}}
|
| 77 |
tag_categories_for_translation = {"ratings": [], "general": [], "characters": []}
|
| 78 |
|
| 79 |
-
for
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
return res, tag_categories_for_translation
|
| 97 |
|
|
@@ -100,7 +119,7 @@ try:
|
|
| 100 |
tagger_instance = Tagger()
|
| 101 |
except RuntimeError as e:
|
| 102 |
print(f"应用启动时Tagger初始化失败: {e}")
|
| 103 |
-
tagger_instance = None
|
| 104 |
|
| 105 |
# ------------------------------------------------------------------
|
| 106 |
# Gradio UI
|
|
@@ -123,7 +142,8 @@ function copyToClipboard(text) {
|
|
| 123 |
}
|
| 124 |
navigator.clipboard.writeText(text).then(() => {
|
| 125 |
const feedback = document.createElement('div');
|
| 126 |
-
let displayText = String(text)
|
|
|
|
| 127 |
feedback.textContent = '已复制: ' + displayText;
|
| 128 |
Object.assign(feedback.style, {
|
| 129 |
position: 'fixed', bottom: '20px', left: '50%', transform: 'translateX(-50%)',
|
|
@@ -136,7 +156,7 @@ function copyToClipboard(text) {
|
|
| 136 |
setTimeout(() => { if (document.body.contains(feedback)) document.body.removeChild(feedback); }, 500);
|
| 137 |
}, 1500);
|
| 138 |
}).catch(err => {
|
| 139 |
-
console.error('Failed to copy tag. Error:', err, '
|
| 140 |
});
|
| 141 |
}
|
| 142 |
"""
|
|
@@ -144,203 +164,241 @@ function copyToClipboard(text) {
|
|
| 144 |
with gr.Blocks(theme=gr.themes.Soft(), title="AI 图像标签分析器", css=custom_css, js=_js_functions) as demo:
|
| 145 |
gr.Markdown("# 🖼️ AI 图像标签分析器")
|
| 146 |
gr.Markdown("上传图片自动识别标签,支持中英文显示和一键复制。[NovelAI在线绘画](https://nai.idlecloud.cc/)")
|
| 147 |
-
|
| 148 |
-
# 统一的状态和登录/登出控制区域
|
| 149 |
-
with gr.Row():
|
| 150 |
-
user_status_html = gr.HTML("<p>ℹ️ 正在检查登录状态...</p>")
|
| 151 |
-
with gr.Row():
|
| 152 |
-
login_button = gr.LoginButton(value="🤗 通过 Hugging Face 登录", visible=True)
|
| 153 |
-
logout_button = gr.LogoutButton(value="退出登录", visible=False)
|
| 154 |
|
| 155 |
state_res = gr.State({})
|
| 156 |
state_translations_dict = gr.State({})
|
|
|
|
|
|
|
| 157 |
|
| 158 |
-
with gr.Row(
|
| 159 |
with gr.Column(scale=1):
|
| 160 |
img_in = gr.Image(type="pil", label="上传图片", height=300)
|
|
|
|
| 161 |
btn = gr.Button("🚀 开始分析", variant="primary", elem_classes=["btn-analyze-container"])
|
| 162 |
|
| 163 |
with gr.Accordion("⚙️ 高级设置", open=False):
|
| 164 |
-
gen_slider = gr.Slider(0, 1, value=0.35, step=0.01, label="通用标签阈值")
|
| 165 |
-
char_slider = gr.Slider(0, 1, value=0.85, step=0.01, label="角色标签阈值")
|
| 166 |
show_tag_scores = gr.Checkbox(True, label="在列表中显示标签置信度")
|
| 167 |
|
| 168 |
-
with gr.Accordion("🔑
|
| 169 |
-
gr.
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
with gr.Accordion("📊 标签汇总设置", open=True):
|
| 176 |
-
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
sum_show_zh = gr.Checkbox(False, label="在汇总中显示中文翻译")
|
| 179 |
|
| 180 |
processing_info = gr.Markdown("", visible=False)
|
| 181 |
|
| 182 |
with gr.Column(scale=2):
|
| 183 |
with gr.Tabs():
|
| 184 |
-
with gr.TabItem("🏷️ 通用标签"):
|
| 185 |
-
|
| 186 |
-
with gr.TabItem("
|
| 187 |
-
|
| 188 |
-
|
|
|
|
|
|
|
| 189 |
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
if
|
| 200 |
-
|
| 201 |
-
user_info = whoami(token=token)
|
| 202 |
-
welcome_msg = f"<p style='color:green;font-weight:bold;'>✅ 您好, {user_info.get('fullname', user_info.get('name'))}!欢迎使用。</p>"
|
| 203 |
-
# 已登录:显示欢迎信息,隐藏登录按钮,显示登出按钮,显示主界面
|
| 204 |
-
return (
|
| 205 |
-
gr.update(value=welcome_msg),
|
| 206 |
-
gr.update(visible=False),
|
| 207 |
-
gr.update(visible=True),
|
| 208 |
-
gr.update(visible=True)
|
| 209 |
-
)
|
| 210 |
-
except Exception as e:
|
| 211 |
-
print(f"Token 无效或已过期: {e}")
|
| 212 |
-
error_msg = "<p style='color:red;'>🚫 登录令牌无效或已过期,请重新登录。</p>"
|
| 213 |
-
# 令牌无效:显示错误,显示登录按钮,隐藏登出按钮,隐藏主界面
|
| 214 |
-
return (
|
| 215 |
-
gr.update(value=error_msg),
|
| 216 |
-
gr.update(visible=True),
|
| 217 |
-
gr.update(visible=False),
|
| 218 |
-
gr.update(visible=False)
|
| 219 |
-
)
|
| 220 |
-
|
| 221 |
-
# 未登录
|
| 222 |
-
info_msg = "<p style='color:#d46b08;'>🚫 您需要登录才能使用此应用。</p>"
|
| 223 |
-
return (
|
| 224 |
-
gr.update(value=info_msg),
|
| 225 |
-
gr.update(visible=True),
|
| 226 |
-
gr.update(visible=False),
|
| 227 |
-
gr.update(visible=False)
|
| 228 |
-
)
|
| 229 |
|
| 230 |
-
def format_tags_html(tags_dict, translations_list, show_scores):
|
| 231 |
-
if not tags_dict: return "<p>暂无标签</p>"
|
| 232 |
html = '<div class="label-container">'
|
| 233 |
-
|
|
|
|
|
|
|
|
|
|
| 234 |
escaped_tag = tag.replace("'", "\\'")
|
|
|
|
| 235 |
html += '<div class="tag-item">'
|
| 236 |
tag_display_html = f'<span class="tag-en" onclick="copyToClipboard(\'{escaped_tag}\')">{tag}</span>'
|
| 237 |
-
|
| 238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
html += f'<div>{tag_display_html}</div>'
|
| 240 |
-
if show_scores:
|
|
|
|
| 241 |
html += '</div>'
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
def generate_summary_text_content(current_res, translations, sum_cats, sep_type, show_zh):
|
| 245 |
-
if not current_res: return "请先分析图像。"
|
| 246 |
-
parts, sep = [], {"逗号": ", ", "换行": "\n", "空格": " "}.get(sep_type, ", ")
|
| 247 |
-
cat_map = {"通用标签": "general", "角色标签": "characters", "评分标签": "ratings"}
|
| 248 |
-
for cat_name in sum_cats:
|
| 249 |
-
cat_key = cat_map.get(cat_name)
|
| 250 |
-
if cat_key and current_res.get(cat_key):
|
| 251 |
-
tags_en, trans = list(current_res[cat_key].keys()), translations.get(cat_key, [])
|
| 252 |
-
tags_to_join = [f"{en}({zh})" if show_zh and i < len(trans) and trans[i] else en for i, en in enumerate(tags_en)]
|
| 253 |
-
if tags_to_join: parts.append(sep.join(tags_to_join))
|
| 254 |
-
return "\n".join(parts) if parts else "选定的类别中没有找到标签。"
|
| 255 |
-
|
| 256 |
-
# ----------------- 主要处理回调 -----------------
|
| 257 |
-
def process_image_and_generate_outputs(
|
| 258 |
-
img, g_th, c_th, s_scores,
|
| 259 |
-
access_pwd, user_tencent_id, user_tencent_key, user_baidu_json,
|
| 260 |
-
sum_cats, s_sep, s_zh_in_sum,
|
| 261 |
-
request: gr.Request
|
| 262 |
-
):
|
| 263 |
-
if get_token_from_request(request) is None:
|
| 264 |
-
raise gr.Error("错误:您的登录会话已失效,请刷新页面后重试。")
|
| 265 |
-
if img is None:
|
| 266 |
-
raise gr.Error("请先上传图片。")
|
| 267 |
-
if tagger_instance is None:
|
| 268 |
-
raise gr.Error("分析器未成功初始化,请检查后台错误。")
|
| 269 |
|
| 270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
|
| 272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
|
| 274 |
-
|
| 275 |
-
(
|
| 276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
)
|
| 278 |
|
| 279 |
-
final_baidu_creds_list = []
|
| 280 |
-
if baidu_json_str and baidu_json_str.strip():
|
| 281 |
-
try:
|
| 282 |
-
parsed_data = json.loads(baidu_json_str)
|
| 283 |
-
if isinstance(parsed_data, list): final_baidu_creds_list = parsed_data
|
| 284 |
-
except json.JSONDecodeError: print("提供的百度凭证JSON无效。")
|
| 285 |
-
|
| 286 |
try:
|
| 287 |
-
res,
|
| 288 |
-
all_tags = [tag for cat in tag_cats_original.values() for tag in cat]
|
| 289 |
-
|
| 290 |
-
translations_flat = translate_texts(
|
| 291 |
-
all_tags,
|
| 292 |
-
tencent_secret_id=final_tencent_id,
|
| 293 |
-
tencent_secret_key=final_tencent_key,
|
| 294 |
-
baidu_credentials_list=final_baidu_creds_list
|
| 295 |
-
) if all_tags else []
|
| 296 |
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 301 |
|
| 302 |
-
|
| 303 |
-
|
|
|
|
|
|
|
|
|
|
| 304 |
|
| 305 |
-
yield
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
|
| 307 |
except Exception as e:
|
| 308 |
import traceback
|
| 309 |
-
traceback.
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
|
| 320 |
btn.click(
|
| 321 |
process_image_and_generate_outputs,
|
| 322 |
-
inputs=[
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
outputs=[
|
| 328 |
-
btn, processing_info,
|
| 329 |
-
out_general, out_char, out_rating,
|
| 330 |
-
out_summary,
|
| 331 |
-
state_res, state_translations_dict
|
| 332 |
-
],
|
| 333 |
)
|
| 334 |
|
| 335 |
-
summary_controls = [
|
| 336 |
for ctrl in summary_controls:
|
| 337 |
ctrl.change(
|
| 338 |
-
fn=
|
| 339 |
-
inputs=[state_res, state_translations_dict]
|
| 340 |
-
outputs=[out_summary]
|
| 341 |
)
|
| 342 |
-
|
| 343 |
if __name__ == "__main__":
|
| 344 |
if tagger_instance is None:
|
| 345 |
-
print("CRITICAL: Tagger
|
| 346 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import huggingface_hub
|
| 4 |
import numpy as np
|
| 5 |
import onnxruntime as rt
|
| 6 |
import pandas as pd
|
| 7 |
from PIL import Image
|
| 8 |
+
from huggingface_hub import login
|
| 9 |
|
| 10 |
+
# 导入修改后的翻译函数
|
| 11 |
from translator import translate_texts
|
| 12 |
|
| 13 |
# ------------------------------------------------------------------
|
|
|
|
| 17 |
MODEL_FILENAME = "model.onnx"
|
| 18 |
LABEL_FILENAME = "selected_tags.csv"
|
| 19 |
|
| 20 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", "")
|
| 21 |
+
if HF_TOKEN:
|
| 22 |
+
try:
|
| 23 |
+
login(token=HF_TOKEN)
|
| 24 |
+
except Exception as e:
|
| 25 |
+
print(f"Hugging Face登录失败: {e}")
|
| 26 |
+
else:
|
| 27 |
+
print("⚠️ 未检测到 HF_TOKEN,私有模型可能下载失败")
|
| 28 |
|
| 29 |
# ------------------------------------------------------------------
|
| 30 |
# Tagger 类 (全局实例化)
|
|
|
|
| 64 |
|
| 65 |
# ------------------------- preprocess -------------------------
|
| 66 |
def _preprocess(self, img: Image.Image) -> np.ndarray:
|
| 67 |
+
if img is None:
|
| 68 |
+
raise ValueError("输入图像不能为空")
|
| 69 |
+
if img.mode != "RGB":
|
| 70 |
+
img = img.convert("RGB")
|
| 71 |
size = max(img.size)
|
| 72 |
canvas = Image.new("RGB", (size, size), (255, 255, 255))
|
| 73 |
canvas.paste(img, ((size - img.width) // 2, (size - img.height) // 2))
|
| 74 |
if size != self.input_size:
|
| 75 |
canvas = canvas.resize((self.input_size, self.input_size), Image.BICUBIC)
|
| 76 |
+
return np.array(canvas)[:, :, ::-1].astype(np.float32) # to BGR
|
| 77 |
|
| 78 |
# --------------------------- predict --------------------------
|
| 79 |
def predict(self, img: Image.Image, gen_th: float = 0.35, char_th: float = 0.85):
|
| 80 |
+
if self.model is None:
|
| 81 |
+
raise RuntimeError("模型未成功加载,无法进行预测。")
|
| 82 |
inp_name = self.model.get_inputs()[0].name
|
| 83 |
outputs = self.model.run(None, {inp_name: self._preprocess(img)[None, ...]})[0][0]
|
| 84 |
|
| 85 |
res = {"ratings": {}, "general": {}, "characters": {}}
|
| 86 |
tag_categories_for_translation = {"ratings": [], "general": [], "characters": []}
|
| 87 |
|
| 88 |
+
for idx in self.categories["rating"]:
|
| 89 |
+
tag_name = self.tag_names[idx].replace("_", " ")
|
| 90 |
+
res["ratings"][tag_name] = float(outputs[idx])
|
| 91 |
+
tag_categories_for_translation["ratings"].append(tag_name)
|
| 92 |
+
|
| 93 |
+
for idx in self.categories["general"]:
|
| 94 |
+
if outputs[idx] > gen_th:
|
| 95 |
+
tag_name = self.tag_names[idx].replace("_", " ")
|
| 96 |
+
res["general"][tag_name] = float(outputs[idx])
|
| 97 |
+
tag_categories_for_translation["general"].append(tag_name)
|
| 98 |
+
|
| 99 |
+
for idx in self.categories["character"]:
|
| 100 |
+
if outputs[idx] > char_th:
|
| 101 |
+
tag_name = self.tag_names[idx].replace("_", " ")
|
| 102 |
+
res["characters"][tag_name] = float(outputs[idx])
|
| 103 |
+
tag_categories_for_translation["characters"].append(tag_name)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
res["general"] = dict(sorted(res["general"].items(), key=lambda kv: kv[1], reverse=True))
|
| 107 |
+
res["characters"] = dict(sorted(res["characters"].items(), key=lambda kv: kv[1], reverse=True))
|
| 108 |
+
res["ratings"] = dict(sorted(res["ratings"].items(), key=lambda kv: kv[1], reverse=True))
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
tag_categories_for_translation["general"] = list(res["general"].keys())
|
| 112 |
+
tag_categories_for_translation["characters"] = list(res["characters"].keys())
|
| 113 |
+
tag_categories_for_translation["ratings"] = list(res["ratings"].keys())
|
| 114 |
|
| 115 |
return res, tag_categories_for_translation
|
| 116 |
|
|
|
|
| 119 |
tagger_instance = Tagger()
|
| 120 |
except RuntimeError as e:
|
| 121 |
print(f"应用启动时Tagger初始化失败: {e}")
|
| 122 |
+
tagger_instance = None # 允许应用启动,但在处理时会失���
|
| 123 |
|
| 124 |
# ------------------------------------------------------------------
|
| 125 |
# Gradio UI
|
|
|
|
| 142 |
}
|
| 143 |
navigator.clipboard.writeText(text).then(() => {
|
| 144 |
const feedback = document.createElement('div');
|
| 145 |
+
let displayText = String(text);
|
| 146 |
+
displayText = displayText.substring(0, 30) + (displayText.length > 30 ? '...' : '');
|
| 147 |
feedback.textContent = '已复制: ' + displayText;
|
| 148 |
Object.assign(feedback.style, {
|
| 149 |
position: 'fixed', bottom: '20px', left: '50%', transform: 'translateX(-50%)',
|
|
|
|
| 156 |
setTimeout(() => { if (document.body.contains(feedback)) document.body.removeChild(feedback); }, 500);
|
| 157 |
}, 1500);
|
| 158 |
}).catch(err => {
|
| 159 |
+
console.error('Failed to copy tag. Error:', err, 'Text:', text);
|
| 160 |
});
|
| 161 |
}
|
| 162 |
"""
|
|
|
|
| 164 |
with gr.Blocks(theme=gr.themes.Soft(), title="AI 图像标签分析器", css=custom_css, js=_js_functions) as demo:
|
| 165 |
gr.Markdown("# 🖼️ AI 图像标签分析器")
|
| 166 |
gr.Markdown("上传图片自动识别标签,支持中英文显示和一键复制。[NovelAI在线绘画](https://nai.idlecloud.cc/)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
state_res = gr.State({})
|
| 169 |
state_translations_dict = gr.State({})
|
| 170 |
+
state_tag_categories_for_translation = gr.State({})
|
| 171 |
+
|
| 172 |
|
| 173 |
+
with gr.Row():
|
| 174 |
with gr.Column(scale=1):
|
| 175 |
img_in = gr.Image(type="pil", label="上传图片", height=300)
|
| 176 |
+
|
| 177 |
btn = gr.Button("🚀 开始分析", variant="primary", elem_classes=["btn-analyze-container"])
|
| 178 |
|
| 179 |
with gr.Accordion("⚙️ 高级设置", open=False):
|
| 180 |
+
gen_slider = gr.Slider(0, 1, value=0.35, step=0.01, label="通用标签阈值", info="越高 → 标签更少更准")
|
| 181 |
+
char_slider = gr.Slider(0, 1, value=0.85, step=0.01, label="角色标签阈值", info="推荐保持较高阈值")
|
| 182 |
show_tag_scores = gr.Checkbox(True, label="在列表中显示标签置信度")
|
| 183 |
|
| 184 |
+
with gr.Accordion("🔑 翻译服务配置", open=False):
|
| 185 |
+
enable_translation_cb = gr.Checkbox(label="启用翻译", value=True, info="取消勾选则不进行翻译")
|
| 186 |
+
gr.Markdown("提供 **系统访问密钥** 或 **自定义API密钥** 来启用翻译功能。如果两者均未提供或不正确,将不进行翻译。")
|
| 187 |
+
|
| 188 |
+
with gr.Tabs():
|
| 189 |
+
with gr.TabItem("使用系统密钥"):
|
| 190 |
+
system_key_input = gr.Textbox(label="系统访问密钥", type="password", placeholder="输入管理员提供的密钥")
|
| 191 |
+
with gr.TabItem("使用自定义API"):
|
| 192 |
+
gr.Markdown("在此处填入你自己的翻译API密钥。")
|
| 193 |
+
tencent_id_input = gr.Textbox(label="腾讯云 SecretId", type="password")
|
| 194 |
+
tencent_key_input = gr.Textbox(label="腾讯云 SecretKey", type="password")
|
| 195 |
+
baidu_json_input = gr.Textbox(label="百度翻译凭证 (JSON格式)", type="password", placeholder='[{"app_id":"...", "secret_key":"..."}]')
|
| 196 |
|
| 197 |
with gr.Accordion("📊 标签汇总设置", open=True):
|
| 198 |
+
gr.Markdown("选择要包含在下方汇总文本框中的标签类别:")
|
| 199 |
+
with gr.Row():
|
| 200 |
+
sum_general = gr.Checkbox(True, label="通用标签", min_width=50)
|
| 201 |
+
sum_char = gr.Checkbox(True, label="角色标签", min_width=50)
|
| 202 |
+
sum_rating = gr.Checkbox(False, label="评分标签", min_width=50)
|
| 203 |
+
sum_sep = gr.Dropdown(["逗号", "换行", "空格"], value="逗号", label="标签之间的分隔符")
|
| 204 |
sum_show_zh = gr.Checkbox(False, label="在汇总中显示中文翻译")
|
| 205 |
|
| 206 |
processing_info = gr.Markdown("", visible=False)
|
| 207 |
|
| 208 |
with gr.Column(scale=2):
|
| 209 |
with gr.Tabs():
|
| 210 |
+
with gr.TabItem("🏷️ 通用标签"):
|
| 211 |
+
out_general = gr.HTML(label="General Tags")
|
| 212 |
+
with gr.TabItem("👤 角色标签"):
|
| 213 |
+
gr.Markdown("<p style='color:gray; font-size:small;'>提示:角色标签推测基于截至2024年2月的数据。</p>")
|
| 214 |
+
out_char = gr.HTML(label="Character Tags")
|
| 215 |
+
with gr.TabItem("⭐ 评分标签"):
|
| 216 |
+
out_rating = gr.HTML(label="Rating Tags")
|
| 217 |
|
| 218 |
+
gr.Markdown("### 标签汇总结果")
|
| 219 |
+
out_summary = gr.Textbox(
|
| 220 |
+
label="标签汇总",
|
| 221 |
+
placeholder="分析完成后,此处将显示汇总的英文标签...",
|
| 222 |
+
lines=5,
|
| 223 |
+
show_copy_button=True
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
def format_tags_html(tags_dict, translations_list, show_scores=True, show_translation_in_list=True):
|
| 227 |
+
if not tags_dict:
|
| 228 |
+
return "<p>暂无标签</p>"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
|
|
|
|
|
|
| 230 |
html = '<div class="label-container">'
|
| 231 |
+
tag_keys = list(tags_dict.keys())
|
| 232 |
+
|
| 233 |
+
for i, tag in enumerate(tag_keys):
|
| 234 |
+
score = tags_dict[tag]
|
| 235 |
escaped_tag = tag.replace("'", "\\'")
|
| 236 |
+
|
| 237 |
html += '<div class="tag-item">'
|
| 238 |
tag_display_html = f'<span class="tag-en" onclick="copyToClipboard(\'{escaped_tag}\')">{tag}</span>'
|
| 239 |
+
|
| 240 |
+
translation_text = translations_list[i] if i < len(translations_list) else None
|
| 241 |
+
# 仅当翻译文本存在且与原文不同时显示
|
| 242 |
+
if show_translation_in_list and translation_text and translation_text != tag:
|
| 243 |
+
tag_display_html += f'<span class="tag-zh">({translation_text})</span>'
|
| 244 |
+
|
| 245 |
html += f'<div>{tag_display_html}</div>'
|
| 246 |
+
if show_scores:
|
| 247 |
+
html += f'<span class="tag-score">{score:.3f}</span>'
|
| 248 |
html += '</div>'
|
| 249 |
+
html += '</div>'
|
| 250 |
+
return html
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
|
| 252 |
+
def generate_summary_text_content(
|
| 253 |
+
current_res, current_translations_dict,
|
| 254 |
+
s_gen, s_char, s_rat, s_sep_type, s_show_zh
|
| 255 |
+
):
|
| 256 |
+
if not current_res: return "请先分析图像或选择要汇总的标签类别。"
|
| 257 |
+
|
| 258 |
+
summary_parts = []
|
| 259 |
+
separator = {"逗号": ", ", "换行": "\n", "空格": " "}.get(s_sep_type, ", ")
|
| 260 |
+
|
| 261 |
+
categories_to_summarize = []
|
| 262 |
+
if s_gen: categories_to_summarize.append("general")
|
| 263 |
+
if s_char: categories_to_summarize.append("characters")
|
| 264 |
+
if s_rat: categories_to_summarize.append("ratings")
|
| 265 |
+
|
| 266 |
+
if not categories_to_summarize: return "请至少选择一个标签类别进行汇总。"
|
| 267 |
+
|
| 268 |
+
for cat_key in categories_to_summarize:
|
| 269 |
+
if current_res.get(cat_key):
|
| 270 |
+
tags_to_join = []
|
| 271 |
+
cat_tags_en = list(current_res[cat_key].keys())
|
| 272 |
+
cat_translations = current_translations_dict.get(cat_key, [])
|
| 273 |
+
|
| 274 |
+
for i, en_tag in enumerate(cat_tags_en):
|
| 275 |
+
translation_text = cat_translations[i] if i < len(cat_translations) else None
|
| 276 |
+
# 仅当勾选显示中文、翻译文本存在且与原文不同时,才加入翻译
|
| 277 |
+
if s_show_zh and translation_text and translation_text != en_tag:
|
| 278 |
+
tags_to_join.append(f"{en_tag}({translation_text})")
|
| 279 |
+
else:
|
| 280 |
+
tags_to_join.append(en_tag)
|
| 281 |
+
if tags_to_join:
|
| 282 |
+
summary_parts.append(separator.join(tags_to_join))
|
| 283 |
+
|
| 284 |
+
joiner = "\n\n" if separator != "\n" and len(summary_parts) > 1 else separator
|
| 285 |
+
final_summary = joiner.join(summary_parts)
|
| 286 |
+
return final_summary if final_summary else "选定的类别中没有找到标签。"
|
| 287 |
|
| 288 |
+
def process_image_and_generate_outputs(
|
| 289 |
+
img, g_th, c_th, s_scores, # Main inputs
|
| 290 |
+
s_gen, s_char, s_rat, s_sep, s_zh_in_sum, # Summary controls
|
| 291 |
+
# New translation controls
|
| 292 |
+
enable_translation, sys_key, tc_id, tc_key, baidu_json
|
| 293 |
+
):
|
| 294 |
+
initial_yield_state = (
|
| 295 |
+
gr.update(interactive=True, value="🚀 开始分析"), # btn
|
| 296 |
+
"", "", "", "", # html outputs
|
| 297 |
+
gr.update(placeholder="分析失败..."), # summary
|
| 298 |
+
{}, {}, {} # states
|
| 299 |
+
)
|
| 300 |
+
if img is None:
|
| 301 |
+
yield (gr.update(visible=True, value="❌ 请先上传图片。"), *initial_yield_state)
|
| 302 |
+
return
|
| 303 |
|
| 304 |
+
if tagger_instance is None:
|
| 305 |
+
yield (gr.update(visible=True, value="❌ 分析器未成功初始化,请检查控制台错误。"), *initial_yield_state)
|
| 306 |
+
return
|
| 307 |
+
|
| 308 |
+
yield (
|
| 309 |
+
gr.update(interactive=False, value="🔄 处理中..."),
|
| 310 |
+
gr.update(visible=True, value="🔄 正在分析图像,请稍候..."),
|
| 311 |
+
gr.HTML(value="<p>分析中...</p>"), gr.HTML(value="<p>分析中...</p>"), gr.HTML(value="<p>分析中...</p>"),
|
| 312 |
+
gr.update(value="分析中,请稍候..."), {}, {}, {}
|
| 313 |
)
|
| 314 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
try:
|
| 316 |
+
res, tag_categories_original_order = tagger_instance.predict(img, g_th, c_th)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 317 |
|
| 318 |
+
current_translations_dict = {}
|
| 319 |
+
if enable_translation:
|
| 320 |
+
all_tags_to_translate = []
|
| 321 |
+
for cat_key in ["general", "characters", "ratings"]:
|
| 322 |
+
all_tags_to_translate.extend(tag_categories_original_order.get(cat_key, []))
|
| 323 |
+
|
| 324 |
+
all_translations_flat = []
|
| 325 |
+
if all_tags_to_translate:
|
| 326 |
+
# 使用新的参数调用翻译函数
|
| 327 |
+
all_translations_flat = translate_texts(
|
| 328 |
+
texts=all_tags_to_translate,
|
| 329 |
+
system_key_input=sys_key,
|
| 330 |
+
tencent_id=tc_id,
|
| 331 |
+
tencent_key=tc_key,
|
| 332 |
+
baidu_creds_json_str=baidu_json
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
offset = 0
|
| 336 |
+
for cat_key in ["general", "characters", "ratings"]:
|
| 337 |
+
num_tags_in_cat = len(tag_categories_original_order.get(cat_key, []))
|
| 338 |
+
current_translations_dict[cat_key] = all_translations_flat[offset : offset + num_tags_in_cat] if num_tags_in_cat > 0 else []
|
| 339 |
+
offset += num_tags_in_cat
|
| 340 |
+
else: # 如果未启用翻译,则用空列表填充
|
| 341 |
+
for cat_key in ["general", "characters", "ratings"]:
|
| 342 |
+
current_translations_dict[cat_key] = []
|
| 343 |
|
| 344 |
+
general_html = format_tags_html(res.get("general", {}), current_translations_dict.get("general", []), s_scores, enable_translation)
|
| 345 |
+
char_html = format_tags_html(res.get("characters", {}), current_translations_dict.get("characters", []), s_scores, enable_translation)
|
| 346 |
+
rating_html = format_tags_html(res.get("ratings", {}), current_translations_dict.get("ratings", []), s_scores, enable_translation)
|
| 347 |
+
|
| 348 |
+
summary_text = generate_summary_text_content(res, current_translations_dict, s_gen, s_char, s_rat, s_sep, s_zh_in_sum)
|
| 349 |
|
| 350 |
+
yield (
|
| 351 |
+
gr.update(interactive=True, value="🚀 开始分析"), gr.update(visible=True, value="✅ 分析完成!"),
|
| 352 |
+
general_html, char_html, rating_html,
|
| 353 |
+
gr.update(value=summary_text), res, current_translations_dict, tag_categories_original_order
|
| 354 |
+
)
|
| 355 |
|
| 356 |
except Exception as e:
|
| 357 |
import traceback
|
| 358 |
+
tb_str = traceback.format_exc()
|
| 359 |
+
print(f"处理时发生错误: {e}\n{tb_str}")
|
| 360 |
+
yield (
|
| 361 |
+
gr.update(visible=True, value=f"❌ 处理失败: {str(e)}"),
|
| 362 |
+
gr.update(interactive=True, value="🚀 开始分析"),
|
| 363 |
+
"<p>处理出错</p>", "<p>处理出错</p>", "<p>处理出错</p>",
|
| 364 |
+
gr.update(value=f"错误: {str(e)}", placeholder="分析失败..."),
|
| 365 |
+
{}, {}, {}
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
def update_summary_display(
|
| 369 |
+
s_gen, s_char, s_rat, s_sep, s_zh_in_sum,
|
| 370 |
+
current_res_from_state, current_translations_from_state
|
| 371 |
+
):
|
| 372 |
+
if not current_res_from_state:
|
| 373 |
+
return gr.update(placeholder="请先完成一次图像分析以生成汇总。", value="")
|
| 374 |
+
|
| 375 |
+
new_summary_text = generate_summary_text_content(
|
| 376 |
+
current_res_from_state, current_translations_from_state,
|
| 377 |
+
s_gen, s_char, s_rat, s_sep, s_zh_in_sum
|
| 378 |
+
)
|
| 379 |
+
return gr.update(value=new_summary_text)
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
translation_inputs = [enable_translation_cb, system_key_input, tencent_id_input, tencent_key_input, baidu_json_input]
|
| 383 |
|
| 384 |
btn.click(
|
| 385 |
process_image_and_generate_outputs,
|
| 386 |
+
inputs=[img_in, gen_slider, char_slider, show_tag_scores,
|
| 387 |
+
sum_general, sum_char, sum_rating, sum_sep, sum_show_zh] + translation_inputs,
|
| 388 |
+
outputs=[btn, processing_info,
|
| 389 |
+
out_general, out_char, out_rating, out_summary,
|
| 390 |
+
state_res, state_translations_dict, state_tag_categories_for_translation]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
)
|
| 392 |
|
| 393 |
+
summary_controls = [sum_general, sum_char, sum_rating, sum_sep, sum_show_zh]
|
| 394 |
for ctrl in summary_controls:
|
| 395 |
ctrl.change(
|
| 396 |
+
fn=update_summary_display,
|
| 397 |
+
inputs=summary_controls + [state_res, state_translations_dict],
|
| 398 |
+
outputs=[out_summary]
|
| 399 |
)
|
| 400 |
+
|
| 401 |
if __name__ == "__main__":
|
| 402 |
if tagger_instance is None:
|
| 403 |
+
print("CRITICAL: Tagger 未能初始化,应用功能将受限。请检查之前的错误信息。")
|
| 404 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|