import cv2 import datetime import imutils import numpy as np protopath = "deploy.prototxt" modelpath = "res10_300x300_ssd_iter_140000.caffemodel" detector = cv2.dnn.readNetFromCaffe(prototxt=protopath, caffeModel=modelpath) # Only enable it if you are using OpenVino environment # detector.setPreferableBackend(cv2.dnn.DNN_BACKEND_INFERENCE_ENGINE) # detector.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU) def main(): cap = cv2.VideoCapture('test_video.mp4') fps_start_time = datetime.datetime.now() fps = 0 total_frames = 0 while True: ret, frame = cap.read() frame = imutils.resize(frame, width=600) total_frames = total_frames + 1 (H, W) = frame.shape[:2] face_blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0), False, False) detector.setInput(face_blob) face_detections = detector.forward() for i in np.arange(0, face_detections.shape[2]): confidence = face_detections[0, 0, i, 2] if confidence > 0.5: face_box = face_detections[0, 0, i, 3:7] * np.array([W, H, W, H]) (startX, startY, endX, endY) = face_box.astype("int") cv2.rectangle(frame, (startX, startY), (endX, endY), (0, 0, 255), 2) fps_end_time = datetime.datetime.now() time_diff = fps_end_time - fps_start_time if time_diff.seconds == 0: fps = 0.0 else: fps = (total_frames / time_diff.seconds) fps_text = "FPS: {:.2f}".format(fps) cv2.putText(frame, fps_text, (5, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1) cv2.imshow("Application", frame) key = cv2.waitKey(1) if key == ord('q'): break cv2.destroyAllWindows() main()