from tensorflow.keras.applications.mobilenet_v2 import preprocess_input from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.models import load_model from imutils.video import VideoStream import numpy as np import argparse import imutils import time import cv2 import os import datetime proto_txt_path = 'deploy.prototxt' model_path = 'res10_300x300_ssd_iter_140000.caffemodel' face_detector = cv2.dnn.readNetFromCaffe(proto_txt_path, model_path) mask_detector = load_model('mask_detector.model') cap = cv2.VideoCapture('mask.mp4') while True: ret, frame = cap.read() frame = imutils.resize(frame, width=400) (h, w) = frame.shape[:2] blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300), (104, 177, 123)) face_detector.setInput(blob) detections = face_detector.forward() faces = [] bbox = [] results = [] for i in range(0, detections.shape[2]): confidence = detections[0, 0, i, 2] if confidence > 0.5: box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") face = frame[startY:endY, startX:endX] face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) face = cv2.resize(face, (224, 224)) face = img_to_array(face) face = preprocess_input(face) face = np.expand_dims(face, axis=0) faces.append(face) bbox.append((startX, startY, endX, endY)) if len(faces) > 0: results = mask_detector.predict(faces) for (face_box, result) in zip(bbox, results): (startX, startY, endX, endY) = face_box (mask, withoutMask) = result label = "" if mask > withoutMask: label = "Mask" color = (0, 255, 0) else: label = "No Mask" color = (0, 0, 255) cv2.putText(frame, label, (startX, startY-10), cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2) cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2) cv2.imshow("Frame", frame) key = cv2.waitKey(1) & 0xFF if key == ord('q'): break