# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List, Optional import torch import torch.nn as nn import torch.nn.functional as F class ImageEncoder(nn.Module): def __init__( self, trunk: nn.Module, neck: nn.Module, scalp: int = 0, ): super().__init__() self.trunk = trunk self.neck = neck self.scalp = scalp assert ( self.trunk.channel_list == self.neck.backbone_channel_list ), f"Channel dims of trunk and neck do not match. Trunk: {self.trunk.channel_list}, neck: {self.neck.backbone_channel_list}" def forward(self, sample: torch.Tensor): # Forward through backbone features, pos = self.neck(self.trunk(sample)) if self.scalp > 0: # Discard the lowest resolution features features, pos = features[: -self.scalp], pos[: -self.scalp] src = features[-1] output = { "vision_features": src, "vision_pos_enc": pos, "backbone_fpn": features, } return output class FpnNeck(nn.Module): """ A modified variant of Feature Pyramid Network (FPN) neck (we remove output conv and also do bicubic interpolation similar to ViT pos embed interpolation) """ def __init__( self, position_encoding: nn.Module, d_model: int, backbone_channel_list: List[int], kernel_size: int = 1, stride: int = 1, padding: int = 0, fpn_interp_model: str = "bilinear", fuse_type: str = "sum", fpn_top_down_levels: Optional[List[int]] = None, ): """Initialize the neck :param trunk: the backbone :param position_encoding: the positional encoding to use :param d_model: the dimension of the model :param neck_norm: the normalization to use """ super().__init__() self.position_encoding = position_encoding self.convs = nn.ModuleList() self.backbone_channel_list = backbone_channel_list self.d_model = d_model for dim in backbone_channel_list: current = nn.Sequential() current.add_module( "conv", nn.Conv2d( in_channels=dim, out_channels=d_model, kernel_size=kernel_size, stride=stride, padding=padding, ), ) self.convs.append(current) self.fpn_interp_model = fpn_interp_model assert fuse_type in ["sum", "avg"] self.fuse_type = fuse_type # levels to have top-down features in its outputs # e.g. if fpn_top_down_levels is [2, 3], then only outputs of level 2 and 3 # have top-down propagation, while outputs of level 0 and level 1 have only # lateral features from the same backbone level. if fpn_top_down_levels is None: # default is to have top-down features on all levels fpn_top_down_levels = range(len(self.convs)) self.fpn_top_down_levels = list(fpn_top_down_levels) def forward(self, xs: List[torch.Tensor]): out = [None] * len(self.convs) pos = [None] * len(self.convs) assert len(xs) == len(self.convs) # fpn forward pass # see https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/fpn.py prev_features = None # forward in top-down order (from low to high resolution) n = len(self.convs) - 1 for i in range(n, -1, -1): x = xs[i] lateral_features = self.convs[n - i](x) if i in self.fpn_top_down_levels and prev_features is not None: top_down_features = F.interpolate( prev_features.to(dtype=torch.float32), scale_factor=2.0, mode=self.fpn_interp_model, align_corners=( None if self.fpn_interp_model == "nearest" else False ), antialias=False, ) prev_features = lateral_features + top_down_features if self.fuse_type == "avg": prev_features /= 2 else: prev_features = lateral_features x_out = prev_features out[i] = x_out pos[i] = self.position_encoding(x_out).to(x_out.dtype) return out, pos