# Install required packages !pip install transformers datasets torchaudio TTS huggingface_hub # Import libraries from datasets import load_dataset, DatasetDict from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech import torch # Load existing TTS model (you can choose other models too) model_id = "microsoft/speecht5_tts" # Example model processor = SpeechT5Processor.from_pretrained(model_id) model = SpeechT5ForTextToSpeech.from_pretrained(model_id) # Load your conlang dataset dataset = load_dataset("csv", data_files={"train": "./dataset/train.csv"}, delimiter=",") # Preprocessing: convert text to tokens and load audio # You can define your own tokenizer for your conlang here def preprocess(example): input_ids = processor.tokenizer(example["text"], return_tensors="pt").input_ids[0] return {"input_ids": input_ids} dataset = dataset.map(preprocess) # Prepare DataLoader from torch.utils.data import DataLoader def collate_fn(batch): input_ids = torch.nn.utils.rnn.pad_sequence([b["input_ids"] for b in batch], batch_first=True) return {"input_ids": input_ids} train_loader = DataLoader(dataset["train"], batch_size=4, shuffle=True, collate_fn=collate_fn) # Fine-tune the model optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5) model.train() for epoch in range(10): # example: 10 epochs for batch in train_loader: outputs = model(input_ids=batch["input_ids"], labels=batch["input_ids"]) loss = outputs.loss loss.backward() optimizer.step() optimizer.zero_grad() print(f"Epoch {epoch+1}, Loss: {loss.item()}") # Save model to Hugging Face Hub (optional) from huggingface_hub import HfApi, HfFolder, Repository repo = Repository(local_dir="./conlang-tts", clone_from="your-username/conlang-tts") model.save_pretrained("./conlang-tts") processor.save_pretrained("./conlang-tts") repo.push_to_hub()