import torch import torch.nn as nn import torch.nn.functional as F import math from torchvision.models.vgg import vgg16 import numpy as np class L_color(nn.Module): def __init__(self): super(L_color, self).__init__() def forward(self, x ): b,c,h,w = x.shape mean_rgb = torch.mean(x,[2,3],keepdim=True) mr,mg, mb = torch.split(mean_rgb, 1, dim=1) Drg = torch.pow(mr-mg,2) Drb = torch.pow(mr-mb,2) Dgb = torch.pow(mb-mg,2) k = torch.pow(torch.pow(Drg,2) + torch.pow(Drb,2) + torch.pow(Dgb,2),0.5) return k class L_spa(nn.Module): def __init__(self): super(L_spa, self).__init__() # print(1)kernel = torch.FloatTensor(kernel).unsqueeze(0).unsqueeze(0) kernel_left = torch.FloatTensor( [[0,0,0],[-1,1,0],[0,0,0]]).cuda().unsqueeze(0).unsqueeze(0) kernel_right = torch.FloatTensor( [[0,0,0],[0,1,-1],[0,0,0]]).cuda().unsqueeze(0).unsqueeze(0) kernel_up = torch.FloatTensor( [[0,-1,0],[0,1, 0 ],[0,0,0]]).cuda().unsqueeze(0).unsqueeze(0) kernel_down = torch.FloatTensor( [[0,0,0],[0,1, 0],[0,-1,0]]).cuda().unsqueeze(0).unsqueeze(0) self.weight_left = nn.Parameter(data=kernel_left, requires_grad=False) self.weight_right = nn.Parameter(data=kernel_right, requires_grad=False) self.weight_up = nn.Parameter(data=kernel_up, requires_grad=False) self.weight_down = nn.Parameter(data=kernel_down, requires_grad=False) self.pool = nn.AvgPool2d(4) def forward(self, org , enhance ): b,c,h,w = org.shape org_mean = torch.mean(org,1,keepdim=True) enhance_mean = torch.mean(enhance,1,keepdim=True) org_pool = self.pool(org_mean) enhance_pool = self.pool(enhance_mean) weight_diff =torch.max(torch.FloatTensor([1]).cuda() + 10000*torch.min(org_pool - torch.FloatTensor([0.3]).cuda(),torch.FloatTensor([0]).cuda()),torch.FloatTensor([0.5]).cuda()) E_1 = torch.mul(torch.sign(enhance_pool - torch.FloatTensor([0.5]).cuda()) ,enhance_pool-org_pool) D_org_letf = F.conv2d(org_pool , self.weight_left, padding=1) D_org_right = F.conv2d(org_pool , self.weight_right, padding=1) D_org_up = F.conv2d(org_pool , self.weight_up, padding=1) D_org_down = F.conv2d(org_pool , self.weight_down, padding=1) D_enhance_letf = F.conv2d(enhance_pool , self.weight_left, padding=1) D_enhance_right = F.conv2d(enhance_pool , self.weight_right, padding=1) D_enhance_up = F.conv2d(enhance_pool , self.weight_up, padding=1) D_enhance_down = F.conv2d(enhance_pool , self.weight_down, padding=1) D_left = torch.pow(D_org_letf - D_enhance_letf,2) D_right = torch.pow(D_org_right - D_enhance_right,2) D_up = torch.pow(D_org_up - D_enhance_up,2) D_down = torch.pow(D_org_down - D_enhance_down,2) E = (D_left + D_right + D_up +D_down) # E = 25*(D_left + D_right + D_up +D_down) return E class L_exp(nn.Module): def __init__(self,patch_size,mean_val): super(L_exp, self).__init__() # print(1) self.pool = nn.AvgPool2d(patch_size) self.mean_val = mean_val def forward(self, x ): b,c,h,w = x.shape x = torch.mean(x,1,keepdim=True) mean = self.pool(x) d = torch.mean(torch.pow(mean- torch.FloatTensor([self.mean_val] ).cuda(),2)) return d class L_TV(nn.Module): def __init__(self,TVLoss_weight=1): super(L_TV,self).__init__() self.TVLoss_weight = TVLoss_weight def forward(self,x): batch_size = x.size()[0] h_x = x.size()[2] w_x = x.size()[3] count_h = (x.size()[2]-1) * x.size()[3] count_w = x.size()[2] * (x.size()[3] - 1) h_tv = torch.pow((x[:,:,1:,:]-x[:,:,:h_x-1,:]),2).sum() w_tv = torch.pow((x[:,:,:,1:]-x[:,:,:,:w_x-1]),2).sum() return self.TVLoss_weight*2*(h_tv/count_h+w_tv/count_w)/batch_size class Sa_Loss(nn.Module): def __init__(self): super(Sa_Loss, self).__init__() # print(1) def forward(self, x ): # self.grad = np.ones(x.shape,dtype=np.float32) b,c,h,w = x.shape # x_de = x.cpu().detach().numpy() r,g,b = torch.split(x , 1, dim=1) mean_rgb = torch.mean(x,[2,3],keepdim=True) mr,mg, mb = torch.split(mean_rgb, 1, dim=1) Dr = r-mr Dg = g-mg Db = b-mb k =torch.pow( torch.pow(Dr,2) + torch.pow(Db,2) + torch.pow(Dg,2),0.5) # print(k) k = torch.mean(k) return k class perception_loss(nn.Module): def __init__(self): super(perception_loss, self).__init__() features = vgg16(pretrained=True).features self.to_relu_1_2 = nn.Sequential() self.to_relu_2_2 = nn.Sequential() self.to_relu_3_3 = nn.Sequential() self.to_relu_4_3 = nn.Sequential() for x in range(4): self.to_relu_1_2.add_module(str(x), features[x]) for x in range(4, 9): self.to_relu_2_2.add_module(str(x), features[x]) for x in range(9, 16): self.to_relu_3_3.add_module(str(x), features[x]) for x in range(16, 23): self.to_relu_4_3.add_module(str(x), features[x]) # don't need the gradients, just want the features for param in self.parameters(): param.requires_grad = False def forward(self, x): h = self.to_relu_1_2(x) h_relu_1_2 = h h = self.to_relu_2_2(h) h_relu_2_2 = h h = self.to_relu_3_3(h) h_relu_3_3 = h h = self.to_relu_4_3(h) h_relu_4_3 = h # out = (h_relu_1_2, h_relu_2_2, h_relu_3_3, h_relu_4_3) return h_relu_4_3