pip install tensorflow import gradio as gr import matplotlib.pyplot as plt import numpy as np from PIL import Image import tensorflow as tf from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as viz_utils from object_detection.utils import ops as utils_op import gradio as gr import os import cv2 def greet(name): return "Hello " + name + "!!" iface = gr.Interface(fn=greet, inputs="text", outputs="text") iface.launch() PATH_TO_LABELS = 'data/label_map.pbtxt' category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True) def pil_image_as_numpy_array(pilimg): img_array = tf.keras.utils.img_to_array(pilimg) return img_array def load_model(): model_dir = 'saved_model' detection_model = tf.saved_model.load(str(model_dir)) return detection_model def predict(image_np): image_np = pil_image_as_numpy_array(image_np) image_np = np.expand_dims(image_np, axis=0) results = detection_model(image_np) result = {key: value.numpy() for key, value in results.items()} label_id_offset = 0 image_np_with_detections = image_np.copy() viz_utils.visualize_boxes_and_labels_on_image_array( image_np_with_detections[0], result['detection_boxes'][0], (result['detection_classes'][0] + label_id_offset).astype(int), result['detection_scores'][0], category_index, use_normalized_coordinates=True, max_boxes_to_draw=200, min_score_thresh=.6, agnostic_mode=False, line_thickness=2 ) result_pil_img = tf.keras.utils.array_to_img(image_np_with_detections[0]) return result_pil_img detection_model = load_model() # Specify paths to example images sample_images = [["br_61.jpg"], ["br_61.jpg"], ] tab1 = gr.Interface( fn=predict, inputs=gr.Image(label='Upload an expressway image', type="pil"), outputs=gr.Image(type="pil"), title='Image Processing', examples=sample_images ) # Create a Multi Interface with Tabs iface = gr.TabbedInterface([tab1], title='Cauliflower and Beetroot Detection via ssd_resnet50_v1_fpn_640x640_coco17_tpu-8') # Launch the interface iface.launch(share=True)