from ultralytics import YOLO from PIL import Image import gradio as gr from huggingface_hub import snapshot_download import os import zipfile import cv2 from tqdm import tqdm def load_model(repo_id): download_dir = snapshot_download(repo_id) print(download_dir) with zipfile.ZipFile(os.path.join(download_dir, "best_int8_openvino_model.zip"), 'r') as zip_ref: zip_ref.extractall(download_dir) path = os.path.join(download_dir, "best_int8_openvino_model") print(path) detection_model = YOLO(path, task='detect') return detection_model def predict(pilimg): source = pilimg # x = np.asarray(pilimg) # print(x.shape) result = detection_model.predict(source, conf=0.5, iou=0.6) img_bgr = result[0].plot() out_pilimg = Image.fromarray(img_bgr[..., ::-1]) # RGB-order PIL image return out_pilimg def predict_video(video_input): # Open the video file video_reader = cv2.VideoCapture(video_input) nb_frames = int(video_reader.get(cv2.CAP_PROP_FRAME_COUNT)) frame_h = int(video_reader.get(cv2.CAP_PROP_FRAME_HEIGHT)) frame_w = int(video_reader.get(cv2.CAP_PROP_FRAME_WIDTH)) fps = video_reader.get(cv2.CAP_PROP_FPS) video_out_filepath = f"{video_input}_output.mp4" video_writer = cv2.VideoWriter(video_out_filepath, cv2.VideoWriter_fourcc(*'mp4v'), fps, (frame_w, frame_h)) # Loop through the video frames for i in tqdm(range(nb_frames)): # Read a frame from the video success, frame = video_reader.read() if success: results = detection_model(frame, device='cpu') # Visualize the results on the frame annotated_frame = results[0].plot() # Write the annotated frame video_writer.write(annotated_frame) video_reader.release() video_writer.release() cv2.destroyAllWindows() cv2.waitKey(1) return video_out_filepath REPO_ID = "GranularFireplace/food_yolov8" detection_model = load_model(REPO_ID) image_interface = gr.Interface( fn=predict, inputs=gr.Image(type="pil", label="Upload photo"), outputs=gr.Image(type="pil", label="Result") ) video_interface = gr.Interface( fn=predict_video, inputs=gr.Video(label="Upload video"), outputs=gr.Video(label="Result") ) gr.TabbedInterface( [image_interface, video_interface], ["Photo", "Video"] ).launch(share=True)