from dataclasses import dataclass # These classes are for user facing column names, to avoid having to change them # all around the code when a modif is needed @dataclass class ColumnContent: name: str type: str displayed_by_default: bool hidden: bool = False never_hidden: bool = False dummy: bool = False def fields(raw_class): return [ v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__" ] @dataclass(frozen=True) class AutoEvalColumn: # Auto evals column model_type_symbol = ColumnContent("T", "str", True) model = ColumnContent("Model", "markdown", True, never_hidden=True) average = ColumnContent("Average ⬆️", "number", True) arc = ColumnContent("ARC", "number", True) hellaswag = ColumnContent("HellaSwag", "number", True) mmlu = ColumnContent("MMLU", "number", True) truthfulqa = ColumnContent("TruthfulQA", "number", True) model_type = ColumnContent("Type", "str", False) precision = ColumnContent("Precision", "str", False, True) license = ColumnContent("Hub License", "str", False) params = ColumnContent("#Params (B)", "number", False) likes = ColumnContent("Hub ❤️", "number", False) revision = ColumnContent("Model sha", "str", False, False) dummy = ColumnContent( "model_name_for_query", "str", True ) # dummy col to implement search bar (hidden by custom CSS) @dataclass(frozen=True) class EloEvalColumn: # Elo evals column model = ColumnContent("Model", "markdown", True) gpt4 = ColumnContent("GPT-4 (all)", "number", True) human_all = ColumnContent("Human (all)", "number", True) human_instruct = ColumnContent("Human (instruct)", "number", True) human_code_instruct = ColumnContent("Human (code-instruct)", "number", True) @dataclass(frozen=True) class EvalQueueColumn: # Queue column model = ColumnContent("model", "markdown", True) revision = ColumnContent("revision", "str", True) private = ColumnContent("private", "bool", True) precision = ColumnContent("precision", "bool", True) weight_type = ColumnContent("weight_type", "str", "Original") status = ColumnContent("status", "str", True) LLAMAS = [ "huggingface/llama-7b", "huggingface/llama-13b", "huggingface/llama-30b", "huggingface/llama-65b", ] KOALA_LINK = "https://huggingface.co/TheBloke/koala-13B-HF" VICUNA_LINK = "https://huggingface.co/lmsys/vicuna-13b-delta-v1.1" OASST_LINK = "https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5" DOLLY_LINK = "https://huggingface.co/databricks/dolly-v2-12b" MODEL_PAGE = "https://huggingface.co/models" LLAMA_LINK = "https://ai.facebook.com/blog/large-language-model-llama-meta-ai/" VICUNA_LINK = "https://huggingface.co/CarperAI/stable-vicuna-13b-delta" ALPACA_LINK = "https://crfm.stanford.edu/2023/03/13/alpaca.html" def model_hyperlink(link, model_name): return f'{model_name}' def make_clickable_model(model_name): link = f"https://huggingface.co/{model_name}" if model_name in LLAMAS: link = LLAMA_LINK model_name = model_name.split("/")[1] elif model_name == "HuggingFaceH4/stable-vicuna-13b-2904": link = VICUNA_LINK model_name = "stable-vicuna-13b" elif model_name == "HuggingFaceH4/llama-7b-ift-alpaca": link = ALPACA_LINK model_name = "alpaca-13b" if model_name == "dolly-12b": link = DOLLY_LINK elif model_name == "vicuna-13b": link = VICUNA_LINK elif model_name == "koala-13b": link = KOALA_LINK elif model_name == "oasst-12b": link = OASST_LINK # else: # link = MODEL_PAGE return model_hyperlink(link, model_name) def styled_error(error): return f"
{error}
" def styled_warning(warn): return f"{warn}
" def styled_message(message): return ( f"{message}
" )