# -*- coding: utf-8 -*- import logging from typing import Union import panphon.featuretable from epitran.epihan import Epihan, EpihanTraditional from epitran.flite import FliteLexLookup from epitran.puncnorm import PuncNorm from epitran.simple import SimpleEpitran from epitran.xsampa import XSampa logger = logging.getLogger('epitran') logger.setLevel(logging.WARNING) class Epitran(object): """Unified interface for IPA transliteration/transcription :param code str: ISO 639-3 plus "-" plus ISO 15924 code of the language/script pair that should be loaded :param preproc bool: apply preprocessors :param postproc bool: apply postprocessors :param ligatures bool: use precomposed ligatures instead of standard IPA :param cedict_filename str: path to file containing the CC-CEDict dictionary :param rev boolean: use reverse transliteration :param rev_preproc bool: if True, apply preprocessors when reverse transliterating :param rev_postproc bool: if True, apply postprocessors when reverse transliterating """ special = {'eng-Latn': FliteLexLookup, 'cmn-Hans': Epihan, 'cmn-Hant': EpihanTraditional} def __init__(self, code: str, preproc: bool=True, postproc: bool=True, ligatures: bool=False, cedict_file: Union[bool, None]=None, rev: bool=False, rev_preproc: bool=True, rev_postproc: bool=True, tones: bool=False): """Constructor method""" if code in self.special: self.epi = self.special[code](ligatures=ligatures, cedict_file=cedict_file, tones=tones) else: self.epi = SimpleEpitran(code, preproc, postproc, ligatures, rev, rev_preproc, rev_postproc, tones=tones) self.ft = panphon.featuretable.FeatureTable() self.xsampa = XSampa() self.puncnorm = PuncNorm() def transliterate(self, word: str, normpunc: bool=False, ligatures: bool=False) -> str: """Transliterates/transcribes a word into IPA :param word str: word to transcribe :param normpunc bool: if True, normalize punctuation :param ligatures bool: if True, use precomposed ligatures instead of standard IPA :return: An IPA string corresponding to the input orthographic string :rtype: str """ return self.epi.transliterate(word, normpunc, ligatures) def reverse_transliterate(self, ipa: str) -> str: """Reconstructs word from IPA. Does the reverse of transliterate() :param ipa str: An IPA representation of a word :return: An orthographic representation of the word :rtype: str """ return self.epi.reverse_transliterate(ipa) def strict_trans(self, word: str, normpunc:bool =False, ligatures: bool=False) -> str: """Transliterate a word into IPA, ignoring all characters that cannot be recognized. :param word str: word to transcribe :param normpunc bool, optional: if True, normalize punctuation :param ligatures bool, optional: if True, use precomposed ligatures instead of standard IPA :return: An IPA string corresponding to the input orthographic string, with all uncoverted characters omitted :rtype: str """ return self.epi.strict_trans(word, normpunc, ligatures) def trans_list(self, word: str, normpunc: bool=False, ligatures: bool=False) -> "list[str]": """Transliterates/transcribes a word into list of IPA phonemes :param word str: word to transcribe :param normpunc bool, optional: if True, normalize punctuation :param ligatures bool, optional: if True, use precomposed ligatures instead of standard IPA :return: list of IPA strings, each corresponding to a segment :rtype: list[str] """ return self.ft.segs_safe(self.epi.transliterate(word, normpunc, ligatures)) def trans_delimiter(self, text: str, delimiter: str=str(' '), normpunc: bool=False, ligatures: bool=False): """Return IPA transliteration with a delimiter between segments :param text str: An orthographic text :param delimiter str, optional: A string to insert between segments :param normpunc bool, optional: If True, normalize punctuation :param ligatures bool, optional: If True, use precomposed ligatures instead of standard IPA :return: String of IPA phonemes separated by `delimiter` :rtype: str """ return delimiter.join(self.trans_list(text, normpunc=normpunc, ligatures=ligatures)) def xsampa_list(self, word: str, normpunc: bool=False, ligaturize: bool=False): """Transliterates/transcribes a word as X-SAMPA :param word str: An orthographic word :param normpunc bool, optional: If True, normalize punctuation :param ligatures bool, optional: If True, use precomposed ligatures instead of standard IPA :return: List of X-SAMPA strings corresponding to `word` :rtype: list[str] """ ipa_segs = self.ft.ipa_segs(self.epi.strict_trans(word, normpunc, ligaturize)) return list(map(self.xsampa.ipa2xs, ipa_segs)) def word_to_tuples(self, word: str, normpunc: bool=False, _ligaturize: bool=False): """Given a word, returns a list of tuples corresponding to IPA segments. The "feature vectors" form a list consisting of (segment, vector) pairs. For IPA segments, segment is a substring of phonetic_form such that the concatenation of all segments in the list is equal to the phonetic_form. The vectors are a sequence of integers drawn from the set {-1, 0, 1} where -1 corresponds to '-', 0 corresponds to '0', and 1 corresponds to '+'. :param word str: An orthographic word :param normpunc bool, optional: If True, normalize punctuation :param ligatures bool, optional: If True, use precomposed ligatures instead of standard IPA :return: A list of tuples corresponding to IPA segments :rtype: list[tuple[str, str, str, str, list[int]]] """ try: return self.epi.word_to_tuples(word, normpunc) except AttributeError: raise AttributeError('Method word_to_tuples not yet implemented for this language-script pair!') from AttributeError