# python3.7 """Contains the implementation of discriminator described in PGGAN. Paper: https://arxiv.org/pdf/1710.10196.pdf Official TensorFlow implementation: https://github.com/tkarras/progressive_growing_of_gans """ import numpy as np import torch import torch.nn as nn import torch.nn.functional as F __all__ = ['PGGANDiscriminator'] # Resolutions allowed. _RESOLUTIONS_ALLOWED = [8, 16, 32, 64, 128, 256, 512, 1024] # Default gain factor for weight scaling. _WSCALE_GAIN = np.sqrt(2.0) # pylint: disable=missing-function-docstring class PGGANDiscriminator(nn.Module): """Defines the discriminator network in PGGAN. NOTE: The discriminator takes images with `RGB` channel order and pixel range [-1, 1] as inputs. Settings for the network: (1) resolution: The resolution of the input image. (2) init_res: Smallest resolution of the convolutional backbone. (default: 4) (3) image_channels: Number of channels of the input image. (default: 3) (4) label_dim: Dimension of the additional label for conditional generation. In one-hot conditioning case, it is equal to the number of classes. If set to 0, conditioning training will be disabled. (default: 0) (5) fused_scale: Whether to fused `conv2d` and `downsample` together, resulting in `conv2d` with strides. (default: False) (6) use_wscale: Whether to use weight scaling. (default: True) (7) wscale_gain: The factor to control weight scaling. (default: sqrt(2.0)) (8) mbstd_groups: Group size for the minibatch standard deviation layer. `0` means disable. (default: 16) (9) fmaps_base: Factor to control number of feature maps for each layer. (default: 16 << 10) (10) fmaps_max: Maximum number of feature maps in each layer. (default: 512) (11) eps: A small value to avoid divide overflow. (default: 1e-8) """ def __init__(self, resolution, init_res=4, image_channels=3, label_dim=0, fused_scale=False, use_wscale=True, wscale_gain=np.sqrt(2.0), mbstd_groups=16, fmaps_base=16 << 10, fmaps_max=512, eps=1e-8): """Initializes with basic settings. Raises: ValueError: If the `resolution` is not supported. """ super().__init__() if resolution not in _RESOLUTIONS_ALLOWED: raise ValueError(f'Invalid resolution: `{resolution}`!\n' f'Resolutions allowed: {_RESOLUTIONS_ALLOWED}.') self.init_res = init_res self.init_res_log2 = int(np.log2(self.init_res)) self.resolution = resolution self.final_res_log2 = int(np.log2(self.resolution)) self.image_channels = image_channels self.label_dim = label_dim self.fused_scale = fused_scale self.use_wscale = use_wscale self.wscale_gain = wscale_gain self.mbstd_groups = mbstd_groups self.fmaps_base = fmaps_base self.fmaps_max = fmaps_max self.eps = eps # Level-of-details (used for progressive training). self.register_buffer('lod', torch.zeros(())) self.pth_to_tf_var_mapping = {'lod': 'lod'} for res_log2 in range(self.final_res_log2, self.init_res_log2 - 1, -1): res = 2 ** res_log2 in_channels = self.get_nf(res) out_channels = self.get_nf(res // 2) block_idx = self.final_res_log2 - res_log2 # Input convolution layer for each resolution. self.add_module( f'input{block_idx}', ConvLayer(in_channels=self.image_channels, out_channels=in_channels, kernel_size=1, add_bias=True, downsample=False, fused_scale=False, use_wscale=use_wscale, wscale_gain=wscale_gain, activation_type='lrelu')) self.pth_to_tf_var_mapping[f'input{block_idx}.weight'] = ( f'FromRGB_lod{block_idx}/weight') self.pth_to_tf_var_mapping[f'input{block_idx}.bias'] = ( f'FromRGB_lod{block_idx}/bias') # Convolution block for each resolution (except the last one). if res != self.init_res: self.add_module( f'layer{2 * block_idx}', ConvLayer(in_channels=in_channels, out_channels=in_channels, kernel_size=3, add_bias=True, downsample=False, fused_scale=False, use_wscale=use_wscale, wscale_gain=wscale_gain, activation_type='lrelu')) tf_layer0_name = 'Conv0' self.add_module( f'layer{2 * block_idx + 1}', ConvLayer(in_channels=in_channels, out_channels=out_channels, kernel_size=3, add_bias=True, downsample=True, fused_scale=fused_scale, use_wscale=use_wscale, wscale_gain=wscale_gain, activation_type='lrelu')) tf_layer1_name = 'Conv1_down' if fused_scale else 'Conv1' # Convolution block for last resolution. else: self.mbstd = MiniBatchSTDLayer(groups=mbstd_groups, eps=eps) self.add_module( f'layer{2 * block_idx}', ConvLayer( in_channels=in_channels + 1, out_channels=in_channels, kernel_size=3, add_bias=True, downsample=False, fused_scale=False, use_wscale=use_wscale, wscale_gain=wscale_gain, activation_type='lrelu')) tf_layer0_name = 'Conv' self.add_module( f'layer{2 * block_idx + 1}', DenseLayer(in_channels=in_channels * res * res, out_channels=out_channels, add_bias=True, use_wscale=use_wscale, wscale_gain=wscale_gain, activation_type='lrelu')) tf_layer1_name = 'Dense0' self.pth_to_tf_var_mapping[f'layer{2 * block_idx}.weight'] = ( f'{res}x{res}/{tf_layer0_name}/weight') self.pth_to_tf_var_mapping[f'layer{2 * block_idx}.bias'] = ( f'{res}x{res}/{tf_layer0_name}/bias') self.pth_to_tf_var_mapping[f'layer{2 * block_idx + 1}.weight'] = ( f'{res}x{res}/{tf_layer1_name}/weight') self.pth_to_tf_var_mapping[f'layer{2 * block_idx + 1}.bias'] = ( f'{res}x{res}/{tf_layer1_name}/bias') # Final dense layer. self.output = DenseLayer(in_channels=out_channels, out_channels=1 + self.label_dim, add_bias=True, use_wscale=self.use_wscale, wscale_gain=1.0, activation_type='linear') self.pth_to_tf_var_mapping['output.weight'] = ( f'{res}x{res}/Dense1/weight') self.pth_to_tf_var_mapping['output.bias'] = ( f'{res}x{res}/Dense1/bias') def get_nf(self, res): """Gets number of feature maps according to the given resolution.""" return min(self.fmaps_base // res, self.fmaps_max) def forward(self, image, lod=None): expected_shape = (self.image_channels, self.resolution, self.resolution) if image.ndim != 4 or image.shape[1:] != expected_shape: raise ValueError(f'The input tensor should be with shape ' f'[batch_size, channel, height, width], where ' f'`channel` equals to {self.image_channels}, ' f'`height`, `width` equal to {self.resolution}!\n' f'But `{image.shape}` is received!') lod = self.lod.item() if lod is None else lod if lod + self.init_res_log2 > self.final_res_log2: raise ValueError(f'Maximum level-of-details (lod) is ' f'{self.final_res_log2 - self.init_res_log2}, ' f'but `{lod}` is received!') lod = self.lod.item() for res_log2 in range(self.final_res_log2, self.init_res_log2 - 1, -1): block_idx = current_lod = self.final_res_log2 - res_log2 if current_lod <= lod < current_lod + 1: x = getattr(self, f'input{block_idx}')(image) elif current_lod - 1 < lod < current_lod: alpha = lod - np.floor(lod) y = getattr(self, f'input{block_idx}')(image) x = y * alpha + x * (1 - alpha) if lod < current_lod + 1: if res_log2 == self.init_res_log2: x = self.mbstd(x) x = getattr(self, f'layer{2 * block_idx}')(x) x = getattr(self, f'layer{2 * block_idx + 1}')(x) if lod > current_lod: image = F.avg_pool2d( image, kernel_size=2, stride=2, padding=0) x = self.output(x) return {'score': x} class MiniBatchSTDLayer(nn.Module): """Implements the minibatch standard deviation layer.""" def __init__(self, groups, eps): super().__init__() self.groups = groups self.eps = eps def extra_repr(self): return f'groups={self.groups}, epsilon={self.eps}' def forward(self, x): if self.groups <= 1: return x N, C, H, W = x.shape G = min(self.groups, N) # Number of groups. y = x.reshape(G, -1, C, H, W) # [GnCHW] y = y - y.mean(dim=0) # [GnCHW] y = y.square().mean(dim=0) # [nCHW] y = (y + self.eps).sqrt() # [nCHW] y = y.mean(dim=(1, 2, 3), keepdim=True) # [n111] y = y.repeat(G, 1, H, W) # [N1HW] x = torch.cat([x, y], dim=1) # [N(C+1)HW] return x class DownsamplingLayer(nn.Module): """Implements the downsampling layer. Basically, this layer can be used to downsample feature maps with average pooling. """ def __init__(self, scale_factor): super().__init__() self.scale_factor = scale_factor def extra_repr(self): return f'factor={self.scale_factor}' def forward(self, x): if self.scale_factor <= 1: return x return F.avg_pool2d(x, kernel_size=self.scale_factor, stride=self.scale_factor, padding=0) class ConvLayer(nn.Module): """Implements the convolutional layer. Basically, this layer executes convolution, activation, and downsampling (if needed) in sequence. """ def __init__(self, in_channels, out_channels, kernel_size, add_bias, downsample, fused_scale, use_wscale, wscale_gain, activation_type): """Initializes with layer settings. Args: in_channels: Number of channels of the input tensor. out_channels: Number of channels of the output tensor. kernel_size: Size of the convolutional kernels. add_bias: Whether to add bias onto the convolutional result. downsample: Whether to downsample the result after convolution. fused_scale: Whether to fused `conv2d` and `downsample` together, resulting in `conv2d` with strides. use_wscale: Whether to use weight scaling. wscale_gain: Gain factor for weight scaling. activation_type: Type of activation. """ super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.add_bias = add_bias self.downsample = downsample self.fused_scale = fused_scale self.use_wscale = use_wscale self.wscale_gain = wscale_gain self.activation_type = activation_type if downsample and not fused_scale: self.down = DownsamplingLayer(scale_factor=2) else: self.down = nn.Identity() if downsample and fused_scale: self.use_stride = True self.stride = 2 self.padding = 1 else: self.use_stride = False self.stride = 1 self.padding = kernel_size // 2 weight_shape = (out_channels, in_channels, kernel_size, kernel_size) fan_in = kernel_size * kernel_size * in_channels wscale = wscale_gain / np.sqrt(fan_in) if use_wscale: self.weight = nn.Parameter(torch.randn(*weight_shape)) self.wscale = wscale else: self.weight = nn.Parameter(torch.randn(*weight_shape) * wscale) self.wscale = 1.0 if add_bias: self.bias = nn.Parameter(torch.zeros(out_channels)) else: self.bias = None assert activation_type in ['linear', 'relu', 'lrelu'] def extra_repr(self): return (f'in_ch={self.in_channels}, ' f'out_ch={self.out_channels}, ' f'ksize={self.kernel_size}, ' f'wscale_gain={self.wscale_gain:.3f}, ' f'bias={self.add_bias}, ' f'downsample={self.scale_factor}, ' f'fused_scale={self.fused_scale}, ' f'act={self.activation_type}') def forward(self, x): weight = self.weight if self.wscale != 1.0: weight = weight * self.wscale if self.use_stride: weight = F.pad(weight, (1, 1, 1, 1, 0, 0, 0, 0), 'constant', 0.0) weight = (weight[:, :, 1:, 1:] + weight[:, :, :-1, 1:] + weight[:, :, 1:, :-1] + weight[:, :, :-1, :-1]) * 0.25 x = F.conv2d(x, weight=weight, bias=self.bias, stride=self.stride, padding=self.padding) if self.activation_type == 'linear': pass elif self.activation_type == 'relu': x = F.relu(x, inplace=True) elif self.activation_type == 'lrelu': x = F.leaky_relu(x, negative_slope=0.2, inplace=True) else: raise NotImplementedError(f'Not implemented activation type ' f'`{self.activation_type}`!') x = self.down(x) return x class DenseLayer(nn.Module): """Implements the dense layer.""" def __init__(self, in_channels, out_channels, add_bias, use_wscale, wscale_gain, activation_type): """Initializes with layer settings. Args: in_channels: Number of channels of the input tensor. out_channels: Number of channels of the output tensor. add_bias: Whether to add bias onto the fully-connected result. use_wscale: Whether to use weight scaling. wscale_gain: Gain factor for weight scaling. activation_type: Type of activation. Raises: NotImplementedError: If the `activation_type` is not supported. """ super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.add_bias = add_bias self.use_wscale = use_wscale self.wscale_gain = wscale_gain self.activation_type = activation_type weight_shape = (out_channels, in_channels) wscale = wscale_gain / np.sqrt(in_channels) if use_wscale: self.weight = nn.Parameter(torch.randn(*weight_shape)) self.wscale = wscale else: self.weight = nn.Parameter(torch.randn(*weight_shape) * wscale) self.wscale = 1.0 if add_bias: self.bias = nn.Parameter(torch.zeros(out_channels)) else: self.bias = None assert activation_type in ['linear', 'relu', 'lrelu'] def forward(self, x): if x.ndim != 2: x = x.flatten(start_dim=1) weight = self.weight if self.wscale != 1.0: weight = weight * self.wscale x = F.linear(x, weight=weight, bias=self.bias) if self.activation_type == 'linear': pass elif self.activation_type == 'relu': x = F.relu(x, inplace=True) elif self.activation_type == 'lrelu': x = F.leaky_relu(x, negative_slope=0.2, inplace=True) else: raise NotImplementedError(f'Not implemented activation type ' f'`{self.activation_type}`!') return x # pylint: enable=missing-function-docstring