import math import torch from typing import Optional from rvc.lib.algorithm.commons import sequence_mask from rvc.lib.algorithm.modules import WaveNet from rvc.lib.algorithm.normalization import LayerNorm from rvc.lib.algorithm.attentions import FFN, MultiHeadAttention class Encoder(torch.nn.Module): """ Encoder module for the Transformer model. Args: hidden_channels (int): Number of hidden channels in the encoder. filter_channels (int): Number of filter channels in the feed-forward network. n_heads (int): Number of attention heads. n_layers (int): Number of encoder layers. kernel_size (int, optional): Kernel size of the convolution layers in the feed-forward network. Defaults to 1. p_dropout (float, optional): Dropout probability. Defaults to 0.0. window_size (int, optional): Window size for relative positional encoding. Defaults to 10. """ def __init__( self, hidden_channels: int, filter_channels: int, n_heads: int, n_layers: int, kernel_size: int = 1, p_dropout: float = 0.0, window_size: int = 10, ): super().__init__() self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = p_dropout self.window_size = window_size self.drop = torch.nn.Dropout(p_dropout) self.attn_layers = torch.nn.ModuleList() self.norm_layers_1 = torch.nn.ModuleList() self.ffn_layers = torch.nn.ModuleList() self.norm_layers_2 = torch.nn.ModuleList() for i in range(self.n_layers): self.attn_layers.append( MultiHeadAttention( hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size, ) ) self.norm_layers_1.append(LayerNorm(hidden_channels)) self.ffn_layers.append( FFN( hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, ) ) self.norm_layers_2.append(LayerNorm(hidden_channels)) def forward(self, x, x_mask): attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) x = x * x_mask for i in range(self.n_layers): y = self.attn_layers[i](x, x, attn_mask) y = self.drop(y) x = self.norm_layers_1[i](x + y) y = self.ffn_layers[i](x, x_mask) y = self.drop(y) x = self.norm_layers_2[i](x + y) return x * x_mask class TextEncoder(torch.nn.Module): """Text Encoder with configurable embedding dimension. Args: out_channels (int): Output channels of the encoder. hidden_channels (int): Hidden channels of the encoder. filter_channels (int): Filter channels of the encoder. n_heads (int): Number of attention heads. n_layers (int): Number of encoder layers. kernel_size (int): Kernel size of the convolutional layers. p_dropout (float): Dropout probability. embedding_dim (int): Embedding dimension for phone embeddings (v1 = 256, v2 = 768). f0 (bool, optional): Whether to use F0 embedding. Defaults to True. """ def __init__( self, out_channels: int, hidden_channels: int, filter_channels: int, n_heads: int, n_layers: int, kernel_size: int, p_dropout: float, embedding_dim: int, f0: bool = True, ): super(TextEncoder, self).__init__() self.out_channels = out_channels self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = float(p_dropout) self.emb_phone = torch.nn.Linear(embedding_dim, hidden_channels) self.lrelu = torch.nn.LeakyReLU(0.1, inplace=True) if f0: self.emb_pitch = torch.nn.Embedding(256, hidden_channels) self.encoder = Encoder( hidden_channels, filter_channels, n_heads, n_layers, kernel_size, float(p_dropout), ) self.proj = torch.nn.Conv1d(hidden_channels, out_channels * 2, 1) def forward( self, phone: torch.Tensor, pitch: Optional[torch.Tensor], lengths: torch.Tensor ): if pitch is None: x = self.emb_phone(phone) else: x = self.emb_phone(phone) + self.emb_pitch(pitch) x = x * math.sqrt(self.hidden_channels) # [b, t, h] x = self.lrelu(x) x = torch.transpose(x, 1, -1) # [b, h, t] x_mask = torch.unsqueeze(sequence_mask(lengths, x.size(2)), 1).to(x.dtype) x = self.encoder(x * x_mask, x_mask) stats = self.proj(x) * x_mask m, logs = torch.split(stats, self.out_channels, dim=1) return m, logs, x_mask class PosteriorEncoder(torch.nn.Module): """Posterior Encoder for inferring latent representation. Args: in_channels (int): Number of channels in the input. out_channels (int): Number of channels in the output. hidden_channels (int): Number of hidden channels in the encoder. kernel_size (int): Kernel size of the convolutional layers. dilation_rate (int): Dilation rate of the convolutional layers. n_layers (int): Number of layers in the encoder. gin_channels (int, optional): Number of channels for the global conditioning input. Defaults to 0. """ def __init__( self, in_channels: int, out_channels: int, hidden_channels: int, kernel_size: int, dilation_rate: int, n_layers: int, gin_channels: int = 0, ): super(PosteriorEncoder, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = gin_channels self.pre = torch.nn.Conv1d(in_channels, hidden_channels, 1) self.enc = WaveNet( hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, ) self.proj = torch.nn.Conv1d(hidden_channels, out_channels * 2, 1) def forward( self, x: torch.Tensor, x_lengths: torch.Tensor, g: Optional[torch.Tensor] = None ): x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) x = self.pre(x) * x_mask x = self.enc(x, x_mask, g=g) stats = self.proj(x) * x_mask m, logs = torch.split(stats, self.out_channels, dim=1) logs_exp = torch.exp(logs) z = m + torch.randn_like(m) * logs_exp z = z * x_mask return z, m, logs, x_mask def remove_weight_norm(self): """Removes weight normalization from the encoder.""" self.enc.remove_weight_norm() def __prepare_scriptable__(self): """Prepares the module for scripting.""" for hook in self.enc._forward_pre_hooks.values(): if ( hook.__module__ == "torch.nn.utils.parametrizations.weight_norm" and hook.__class__.__name__ == "WeightNorm" ): torch.nn.utils.remove_weight_norm(self.enc) return self