from typing import Union import torch.nn.functional as F import numpy as np import torch import torch.nn as nn from torch.nn.utils.parametrizations import weight_norm from torchaudio.transforms import Resample import os import librosa import soundfile as sf import torch.utils.data from librosa.filters import mel as librosa_mel_fn import math from functools import partial from einops import rearrange, repeat from local_attention import LocalAttention from torch import nn os.environ["LRU_CACHE_CAPACITY"] = "3" def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False): sampling_rate = None try: data, sampling_rate = sf.read(full_path, always_2d=True) # than soundfile. except Exception as error: print(f"'{full_path}' failed to load with {error}") if return_empty_on_exception: return [], sampling_rate or target_sr or 48000 else: raise Exception(error) if len(data.shape) > 1: data = data[:, 0] assert ( len(data) > 2 ) # check duration of audio file is > 2 samples (because otherwise the slice operation was on the wrong dimension) if np.issubdtype(data.dtype, np.integer): # if audio data is type int max_mag = -np.iinfo( data.dtype ).min # maximum magnitude = min possible value of intXX else: # if audio data is type fp32 max_mag = max(np.amax(data), -np.amin(data)) max_mag = ( (2**31) + 1 if max_mag > (2**15) else ((2**15) + 1 if max_mag > 1.01 else 1.0) ) # data should be either 16-bit INT, 32-bit INT or [-1 to 1] float32 data = torch.FloatTensor(data.astype(np.float32)) / max_mag if ( torch.isinf(data) | torch.isnan(data) ).any() and return_empty_on_exception: # resample will crash with inf/NaN inputs. return_empty_on_exception will return empty arr instead of except return [], sampling_rate or target_sr or 48000 if target_sr is not None and sampling_rate != target_sr: data = torch.from_numpy( librosa.core.resample( data.numpy(), orig_sr=sampling_rate, target_sr=target_sr ) ) sampling_rate = target_sr return data, sampling_rate def dynamic_range_compression(x, C=1, clip_val=1e-5): return np.log(np.clip(x, a_min=clip_val, a_max=None) * C) def dynamic_range_decompression(x, C=1): return np.exp(x) / C def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): return torch.log(torch.clamp(x, min=clip_val) * C) def dynamic_range_decompression_torch(x, C=1): return torch.exp(x) / C class STFT: def __init__( self, sr=22050, n_mels=80, n_fft=1024, win_size=1024, hop_length=256, fmin=20, fmax=11025, clip_val=1e-5, ): self.target_sr = sr self.n_mels = n_mels self.n_fft = n_fft self.win_size = win_size self.hop_length = hop_length self.fmin = fmin self.fmax = fmax self.clip_val = clip_val self.mel_basis = {} self.hann_window = {} def get_mel(self, y, keyshift=0, speed=1, center=False, train=False): sampling_rate = self.target_sr n_mels = self.n_mels n_fft = self.n_fft win_size = self.win_size hop_length = self.hop_length fmin = self.fmin fmax = self.fmax clip_val = self.clip_val factor = 2 ** (keyshift / 12) n_fft_new = int(np.round(n_fft * factor)) win_size_new = int(np.round(win_size * factor)) hop_length_new = int(np.round(hop_length * speed)) if not train: mel_basis = self.mel_basis hann_window = self.hann_window else: mel_basis = {} hann_window = {} mel_basis_key = str(fmax) + "_" + str(y.device) if mel_basis_key not in mel_basis: mel = librosa_mel_fn( sr=sampling_rate, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax ) mel_basis[mel_basis_key] = torch.from_numpy(mel).float().to(y.device) keyshift_key = str(keyshift) + "_" + str(y.device) if keyshift_key not in hann_window: hann_window[keyshift_key] = torch.hann_window(win_size_new).to(y.device) pad_left = (win_size_new - hop_length_new) // 2 pad_right = max( (win_size_new - hop_length_new + 1) // 2, win_size_new - y.size(-1) - pad_left, ) if pad_right < y.size(-1): mode = "reflect" else: mode = "constant" y = torch.nn.functional.pad(y.unsqueeze(1), (pad_left, pad_right), mode=mode) y = y.squeeze(1) spec = torch.stft( y, n_fft_new, hop_length=hop_length_new, win_length=win_size_new, window=hann_window[keyshift_key], center=center, pad_mode="reflect", normalized=False, onesided=True, return_complex=True, ) spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + (1e-9)) if keyshift != 0: size = n_fft // 2 + 1 resize = spec.size(1) if resize < size: spec = F.pad(spec, (0, 0, 0, size - resize)) spec = spec[:, :size, :] * win_size / win_size_new spec = torch.matmul(mel_basis[mel_basis_key], spec) spec = dynamic_range_compression_torch(spec, clip_val=clip_val) return spec def __call__(self, audiopath): audio, sr = load_wav_to_torch(audiopath, target_sr=self.target_sr) spect = self.get_mel(audio.unsqueeze(0)).squeeze(0) return spect stft = STFT() # import fast_transformers.causal_product.causal_product_cuda def softmax_kernel( data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device=None ): b, h, *_ = data.shape # (batch size, head, length, model_dim) # normalize model dim data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1.0 # what is ration?, projection_matrix.shape[0] --> 266 ratio = projection_matrix.shape[0] ** -0.5 projection = repeat(projection_matrix, "j d -> b h j d", b=b, h=h) projection = projection.type_as(data) # data_dash = w^T x data_dash = torch.einsum("...id,...jd->...ij", (data_normalizer * data), projection) # diag_data = D**2 diag_data = data**2 diag_data = torch.sum(diag_data, dim=-1) diag_data = (diag_data / 2.0) * (data_normalizer**2) diag_data = diag_data.unsqueeze(dim=-1) if is_query: data_dash = ratio * ( torch.exp( data_dash - diag_data - torch.max(data_dash, dim=-1, keepdim=True).values ) + eps ) else: data_dash = ratio * ( torch.exp(data_dash - diag_data + eps) ) # - torch.max(data_dash)) + eps) return data_dash.type_as(data) def orthogonal_matrix_chunk(cols, qr_uniform_q=False, device=None): unstructured_block = torch.randn((cols, cols), device=device) q, r = torch.linalg.qr(unstructured_block.cpu(), mode="reduced") q, r = map(lambda t: t.to(device), (q, r)) # proposed by @Parskatt # to make sure Q is uniform https://arxiv.org/pdf/math-ph/0609050.pdf if qr_uniform_q: d = torch.diag(r, 0) q *= d.sign() return q.t() def exists(val): return val is not None def empty(tensor): return tensor.numel() == 0 def default(val, d): return val if exists(val) else d def cast_tuple(val): return (val,) if not isinstance(val, tuple) else val class PCmer(nn.Module): """The encoder that is used in the Transformer model.""" def __init__( self, num_layers, num_heads, dim_model, dim_keys, dim_values, residual_dropout, attention_dropout, ): super().__init__() self.num_layers = num_layers self.num_heads = num_heads self.dim_model = dim_model self.dim_values = dim_values self.dim_keys = dim_keys self.residual_dropout = residual_dropout self.attention_dropout = attention_dropout self._layers = nn.ModuleList([_EncoderLayer(self) for _ in range(num_layers)]) # METHODS ######################################################################################################## def forward(self, phone, mask=None): # apply all layers to the input for i, layer in enumerate(self._layers): phone = layer(phone, mask) # provide the final sequence return phone # ==================================================================================================================== # # CLASS _ E N C O D E R L A Y E R # # ==================================================================================================================== # class _EncoderLayer(nn.Module): """One layer of the encoder. Attributes: attn: (:class:`mha.MultiHeadAttention`): The attention mechanism that is used to read the input sequence. feed_forward (:class:`ffl.FeedForwardLayer`): The feed-forward layer on top of the attention mechanism. """ def __init__(self, parent: PCmer): """Creates a new instance of ``_EncoderLayer``. Args: parent (Encoder): The encoder that the layers is created for. """ super().__init__() self.conformer = ConformerConvModule(parent.dim_model) self.norm = nn.LayerNorm(parent.dim_model) self.dropout = nn.Dropout(parent.residual_dropout) # selfatt -> fastatt: performer! self.attn = SelfAttention( dim=parent.dim_model, heads=parent.num_heads, causal=False ) # METHODS ######################################################################################################## def forward(self, phone, mask=None): # compute attention sub-layer phone = phone + (self.attn(self.norm(phone), mask=mask)) phone = phone + (self.conformer(phone)) return phone def calc_same_padding(kernel_size): pad = kernel_size // 2 return (pad, pad - (kernel_size + 1) % 2) # helper classes class Swish(nn.Module): def forward(self, x): return x * x.sigmoid() class Transpose(nn.Module): def __init__(self, dims): super().__init__() assert len(dims) == 2, "dims must be a tuple of two dimensions" self.dims = dims def forward(self, x): return x.transpose(*self.dims) class GLU(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, x): out, gate = x.chunk(2, dim=self.dim) return out * gate.sigmoid() class DepthWiseConv1d(nn.Module): def __init__(self, chan_in, chan_out, kernel_size, padding): super().__init__() self.padding = padding self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, groups=chan_in) def forward(self, x): x = F.pad(x, self.padding) return self.conv(x) class ConformerConvModule(nn.Module): def __init__( self, dim, causal=False, expansion_factor=2, kernel_size=31, dropout=0.0 ): super().__init__() inner_dim = dim * expansion_factor padding = calc_same_padding(kernel_size) if not causal else (kernel_size - 1, 0) self.net = nn.Sequential( nn.LayerNorm(dim), Transpose((1, 2)), nn.Conv1d(dim, inner_dim * 2, 1), GLU(dim=1), DepthWiseConv1d( inner_dim, inner_dim, kernel_size=kernel_size, padding=padding ), # nn.BatchNorm1d(inner_dim) if not causal else nn.Identity(), Swish(), nn.Conv1d(inner_dim, dim, 1), Transpose((1, 2)), nn.Dropout(dropout), ) def forward(self, x): return self.net(x) def linear_attention(q, k, v): if v is None: out = torch.einsum("...ed,...nd->...ne", k, q) return out else: k_cumsum = k.sum(dim=-2) # k_cumsum = k.sum(dim = -2) D_inv = 1.0 / (torch.einsum("...nd,...d->...n", q, k_cumsum.type_as(q)) + 1e-8) context = torch.einsum("...nd,...ne->...de", k, v) out = torch.einsum("...de,...nd,...n->...ne", context, q, D_inv) return out def gaussian_orthogonal_random_matrix( nb_rows, nb_columns, scaling=0, qr_uniform_q=False, device=None ): nb_full_blocks = int(nb_rows / nb_columns) block_list = [] for _ in range(nb_full_blocks): q = orthogonal_matrix_chunk( nb_columns, qr_uniform_q=qr_uniform_q, device=device ) block_list.append(q) remaining_rows = nb_rows - nb_full_blocks * nb_columns if remaining_rows > 0: q = orthogonal_matrix_chunk( nb_columns, qr_uniform_q=qr_uniform_q, device=device ) block_list.append(q[:remaining_rows]) final_matrix = torch.cat(block_list) if scaling == 0: multiplier = torch.randn((nb_rows, nb_columns), device=device).norm(dim=1) elif scaling == 1: multiplier = math.sqrt((float(nb_columns))) * torch.ones( (nb_rows,), device=device ) else: raise ValueError(f"Invalid scaling {scaling}") return torch.diag(multiplier) @ final_matrix class FastAttention(nn.Module): def __init__( self, dim_heads, nb_features=None, ortho_scaling=0, causal=False, generalized_attention=False, kernel_fn=nn.ReLU(), qr_uniform_q=False, no_projection=False, ): super().__init__() nb_features = default(nb_features, int(dim_heads * math.log(dim_heads))) self.dim_heads = dim_heads self.nb_features = nb_features self.ortho_scaling = ortho_scaling self.create_projection = partial( gaussian_orthogonal_random_matrix, nb_rows=self.nb_features, nb_columns=dim_heads, scaling=ortho_scaling, qr_uniform_q=qr_uniform_q, ) projection_matrix = self.create_projection() self.register_buffer("projection_matrix", projection_matrix) self.generalized_attention = generalized_attention self.kernel_fn = kernel_fn # if this is turned on, no projection will be used # queries and keys will be softmax-ed as in the original efficient attention paper self.no_projection = no_projection self.causal = causal @torch.no_grad() def redraw_projection_matrix(self): projections = self.create_projection() self.projection_matrix.copy_(projections) del projections def forward(self, q, k, v): device = q.device if self.no_projection: q = q.softmax(dim=-1) k = torch.exp(k) if self.causal else k.softmax(dim=-2) else: create_kernel = partial( softmax_kernel, projection_matrix=self.projection_matrix, device=device ) q = create_kernel(q, is_query=True) k = create_kernel(k, is_query=False) attn_fn = linear_attention if not self.causal else self.causal_linear_fn if v is None: out = attn_fn(q, k, None) return out else: out = attn_fn(q, k, v) return out class SelfAttention(nn.Module): def __init__( self, dim, causal=False, heads=8, dim_head=64, local_heads=0, local_window_size=256, nb_features=None, feature_redraw_interval=1000, generalized_attention=False, kernel_fn=nn.ReLU(), qr_uniform_q=False, dropout=0.0, no_projection=False, ): super().__init__() assert dim % heads == 0, "dimension must be divisible by number of heads" dim_head = default(dim_head, dim // heads) inner_dim = dim_head * heads self.fast_attention = FastAttention( dim_head, nb_features, causal=causal, generalized_attention=generalized_attention, kernel_fn=kernel_fn, qr_uniform_q=qr_uniform_q, no_projection=no_projection, ) self.heads = heads self.global_heads = heads - local_heads self.local_attn = ( LocalAttention( window_size=local_window_size, causal=causal, autopad=True, dropout=dropout, look_forward=int(not causal), rel_pos_emb_config=(dim_head, local_heads), ) if local_heads > 0 else None ) self.to_q = nn.Linear(dim, inner_dim) self.to_k = nn.Linear(dim, inner_dim) self.to_v = nn.Linear(dim, inner_dim) self.to_out = nn.Linear(inner_dim, dim) self.dropout = nn.Dropout(dropout) @torch.no_grad() def redraw_projection_matrix(self): self.fast_attention.redraw_projection_matrix() def forward( self, x, context=None, mask=None, context_mask=None, name=None, inference=False, **kwargs, ): _, _, _, h, gh = *x.shape, self.heads, self.global_heads cross_attend = exists(context) context = default(context, x) context_mask = default(context_mask, mask) if not cross_attend else context_mask q, k, v = self.to_q(x), self.to_k(context), self.to_v(context) q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v)) (q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v)) attn_outs = [] if not empty(q): if exists(context_mask): global_mask = context_mask[:, None, :, None] v.masked_fill_(~global_mask, 0.0) if cross_attend: pass else: out = self.fast_attention(q, k, v) attn_outs.append(out) if not empty(lq): assert ( not cross_attend ), "local attention is not compatible with cross attention" out = self.local_attn(lq, lk, lv, input_mask=mask) attn_outs.append(out) out = torch.cat(attn_outs, dim=1) out = rearrange(out, "b h n d -> b n (h d)") out = self.to_out(out) return self.dropout(out) def l2_regularization(model, l2_alpha): l2_loss = [] for module in model.modules(): if type(module) is nn.Conv2d: l2_loss.append((module.weight**2).sum() / 2.0) return l2_alpha * sum(l2_loss) class FCPE(nn.Module): def __init__( self, input_channel=128, out_dims=360, n_layers=12, n_chans=512, use_siren=False, use_full=False, loss_mse_scale=10, loss_l2_regularization=False, loss_l2_regularization_scale=1, loss_grad1_mse=False, loss_grad1_mse_scale=1, f0_max=1975.5, f0_min=32.70, confidence=False, threshold=0.05, use_input_conv=True, ): super().__init__() if use_siren is True: raise ValueError("Siren is not supported yet.") if use_full is True: raise ValueError("Full model is not supported yet.") self.loss_mse_scale = loss_mse_scale if (loss_mse_scale is not None) else 10 self.loss_l2_regularization = ( loss_l2_regularization if (loss_l2_regularization is not None) else False ) self.loss_l2_regularization_scale = ( loss_l2_regularization_scale if (loss_l2_regularization_scale is not None) else 1 ) self.loss_grad1_mse = loss_grad1_mse if (loss_grad1_mse is not None) else False self.loss_grad1_mse_scale = ( loss_grad1_mse_scale if (loss_grad1_mse_scale is not None) else 1 ) self.f0_max = f0_max if (f0_max is not None) else 1975.5 self.f0_min = f0_min if (f0_min is not None) else 32.70 self.confidence = confidence if (confidence is not None) else False self.threshold = threshold if (threshold is not None) else 0.05 self.use_input_conv = use_input_conv if (use_input_conv is not None) else True self.cent_table_b = torch.Tensor( np.linspace( self.f0_to_cent(torch.Tensor([f0_min]))[0], self.f0_to_cent(torch.Tensor([f0_max]))[0], out_dims, ) ) self.register_buffer("cent_table", self.cent_table_b) # conv in stack _leaky = nn.LeakyReLU() self.stack = nn.Sequential( nn.Conv1d(input_channel, n_chans, 3, 1, 1), nn.GroupNorm(4, n_chans), _leaky, nn.Conv1d(n_chans, n_chans, 3, 1, 1), ) # transformer self.decoder = PCmer( num_layers=n_layers, num_heads=8, dim_model=n_chans, dim_keys=n_chans, dim_values=n_chans, residual_dropout=0.1, attention_dropout=0.1, ) self.norm = nn.LayerNorm(n_chans) # out self.n_out = out_dims self.dense_out = weight_norm(nn.Linear(n_chans, self.n_out)) def forward( self, mel, infer=True, gt_f0=None, return_hz_f0=False, cdecoder="local_argmax" ): """ input: B x n_frames x n_unit return: dict of B x n_frames x feat """ if cdecoder == "argmax": self.cdecoder = self.cents_decoder elif cdecoder == "local_argmax": self.cdecoder = self.cents_local_decoder if self.use_input_conv: x = self.stack(mel.transpose(1, 2)).transpose(1, 2) else: x = mel x = self.decoder(x) x = self.norm(x) x = self.dense_out(x) # [B,N,D] x = torch.sigmoid(x) if not infer: gt_cent_f0 = self.f0_to_cent(gt_f0) # mel f0 #[B,N,1] gt_cent_f0 = self.gaussian_blurred_cent(gt_cent_f0) # #[B,N,out_dim] loss_all = self.loss_mse_scale * F.binary_cross_entropy( x, gt_cent_f0 ) # bce loss # l2 regularization if self.loss_l2_regularization: loss_all = loss_all + l2_regularization( model=self, l2_alpha=self.loss_l2_regularization_scale ) x = loss_all if infer: x = self.cdecoder(x) x = self.cent_to_f0(x) if not return_hz_f0: x = (1 + x / 700).log() return x def cents_decoder(self, y, mask=True): B, N, _ = y.size() ci = self.cent_table[None, None, :].expand(B, N, -1) rtn = torch.sum(ci * y, dim=-1, keepdim=True) / torch.sum( y, dim=-1, keepdim=True ) # cents: [B,N,1] if mask: confident = torch.max(y, dim=-1, keepdim=True)[0] confident_mask = torch.ones_like(confident) confident_mask[confident <= self.threshold] = float("-INF") rtn = rtn * confident_mask if self.confidence: return rtn, confident else: return rtn def cents_local_decoder(self, y, mask=True): B, N, _ = y.size() ci = self.cent_table[None, None, :].expand(B, N, -1) confident, max_index = torch.max(y, dim=-1, keepdim=True) local_argmax_index = torch.arange(0, 9).to(max_index.device) + (max_index - 4) local_argmax_index[local_argmax_index < 0] = 0 local_argmax_index[local_argmax_index >= self.n_out] = self.n_out - 1 ci_l = torch.gather(ci, -1, local_argmax_index) y_l = torch.gather(y, -1, local_argmax_index) rtn = torch.sum(ci_l * y_l, dim=-1, keepdim=True) / torch.sum( y_l, dim=-1, keepdim=True ) # cents: [B,N,1] if mask: confident_mask = torch.ones_like(confident) confident_mask[confident <= self.threshold] = float("-INF") rtn = rtn * confident_mask if self.confidence: return rtn, confident else: return rtn def cent_to_f0(self, cent): return 10.0 * 2 ** (cent / 1200.0) def f0_to_cent(self, f0): return 1200.0 * torch.log2(f0 / 10.0) def gaussian_blurred_cent(self, cents): # cents: [B,N,1] mask = (cents > 0.1) & (cents < (1200.0 * np.log2(self.f0_max / 10.0))) B, N, _ = cents.size() ci = self.cent_table[None, None, :].expand(B, N, -1) return torch.exp(-torch.square(ci - cents) / 1250) * mask.float() class FCPEInfer: def __init__(self, model_path, device=None, dtype=torch.float32): if device is None: device = "cuda" if torch.cuda.is_available() else "cpu" self.device = device ckpt = torch.load(model_path, map_location=torch.device(self.device)) self.args = DotDict(ckpt["config"]) self.dtype = dtype model = FCPE( input_channel=self.args.model.input_channel, out_dims=self.args.model.out_dims, n_layers=self.args.model.n_layers, n_chans=self.args.model.n_chans, use_siren=self.args.model.use_siren, use_full=self.args.model.use_full, loss_mse_scale=self.args.loss.loss_mse_scale, loss_l2_regularization=self.args.loss.loss_l2_regularization, loss_l2_regularization_scale=self.args.loss.loss_l2_regularization_scale, loss_grad1_mse=self.args.loss.loss_grad1_mse, loss_grad1_mse_scale=self.args.loss.loss_grad1_mse_scale, f0_max=self.args.model.f0_max, f0_min=self.args.model.f0_min, confidence=self.args.model.confidence, ) model.to(self.device).to(self.dtype) model.load_state_dict(ckpt["model"]) model.eval() self.model = model self.wav2mel = Wav2Mel(self.args, dtype=self.dtype, device=self.device) @torch.no_grad() def __call__(self, audio, sr, threshold=0.05): self.model.threshold = threshold audio = audio[None, :] mel = self.wav2mel(audio=audio, sample_rate=sr).to(self.dtype) f0 = self.model(mel=mel, infer=True, return_hz_f0=True) return f0 class Wav2Mel: def __init__(self, args, device=None, dtype=torch.float32): # self.args = args self.sampling_rate = args.mel.sampling_rate self.hop_size = args.mel.hop_size if device is None: device = "cuda" if torch.cuda.is_available() else "cpu" self.device = device self.dtype = dtype self.stft = STFT( args.mel.sampling_rate, args.mel.num_mels, args.mel.n_fft, args.mel.win_size, args.mel.hop_size, args.mel.fmin, args.mel.fmax, ) self.resample_kernel = {} def extract_nvstft(self, audio, keyshift=0, train=False): mel = self.stft.get_mel(audio, keyshift=keyshift, train=train).transpose( 1, 2 ) # B, n_frames, bins return mel def extract_mel(self, audio, sample_rate, keyshift=0, train=False): audio = audio.to(self.dtype).to(self.device) # resample if sample_rate == self.sampling_rate: audio_res = audio else: key_str = str(sample_rate) if key_str not in self.resample_kernel: self.resample_kernel[key_str] = Resample( sample_rate, self.sampling_rate, lowpass_filter_width=128 ) self.resample_kernel[key_str] = ( self.resample_kernel[key_str].to(self.dtype).to(self.device) ) audio_res = self.resample_kernel[key_str](audio) # extract mel = self.extract_nvstft( audio_res, keyshift=keyshift, train=train ) # B, n_frames, bins n_frames = int(audio.shape[1] // self.hop_size) + 1 if n_frames > int(mel.shape[1]): mel = torch.cat((mel, mel[:, -1:, :]), 1) if n_frames < int(mel.shape[1]): mel = mel[:, :n_frames, :] return mel def __call__(self, audio, sample_rate, keyshift=0, train=False): return self.extract_mel(audio, sample_rate, keyshift=keyshift, train=train) class DotDict(dict): def __getattr__(*args): val = dict.get(*args) return DotDict(val) if type(val) is dict else val __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ class F0Predictor(object): def compute_f0(self, wav, p_len): """ input: wav:[signal_length] p_len:int output: f0:[signal_length//hop_length] """ pass def compute_f0_uv(self, wav, p_len): """ input: wav:[signal_length] p_len:int output: f0:[signal_length//hop_length],uv:[signal_length//hop_length] """ pass class FCPEF0Predictor(F0Predictor): def __init__( self, model_path, hop_length=512, f0_min=50, f0_max=1100, dtype=torch.float32, device=None, sampling_rate=44100, threshold=0.05, ): self.fcpe = FCPEInfer(model_path, device=device, dtype=dtype) self.hop_length = hop_length self.f0_min = f0_min self.f0_max = f0_max if device is None: self.device = "cuda" if torch.cuda.is_available() else "cpu" else: self.device = device self.threshold = threshold self.sampling_rate = sampling_rate self.dtype = dtype self.name = "fcpe" def repeat_expand( self, content: Union[torch.Tensor, np.ndarray], target_len: int, mode: str = "nearest", ): ndim = content.ndim if content.ndim == 1: content = content[None, None] elif content.ndim == 2: content = content[None] assert content.ndim == 3 is_np = isinstance(content, np.ndarray) if is_np: content = torch.from_numpy(content) results = torch.nn.functional.interpolate(content, size=target_len, mode=mode) if is_np: results = results.numpy() if ndim == 1: return results[0, 0] elif ndim == 2: return results[0] def post_process(self, x, sampling_rate, f0, pad_to): if isinstance(f0, np.ndarray): f0 = torch.from_numpy(f0).float().to(x.device) if pad_to is None: return f0 f0 = self.repeat_expand(f0, pad_to) vuv_vector = torch.zeros_like(f0) vuv_vector[f0 > 0.0] = 1.0 vuv_vector[f0 <= 0.0] = 0.0 # 去掉0频率, 并线性插值 nzindex = torch.nonzero(f0).squeeze() f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy() time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy() time_frame = np.arange(pad_to) * self.hop_length / sampling_rate vuv_vector = F.interpolate(vuv_vector[None, None, :], size=pad_to)[0][0] if f0.shape[0] <= 0: return ( torch.zeros(pad_to, dtype=torch.float, device=x.device).cpu().numpy(), vuv_vector.cpu().numpy(), ) if f0.shape[0] == 1: return ( torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[0] ).cpu().numpy(), vuv_vector.cpu().numpy() # 大概可以用 torch 重写? f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1]) # vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0)) return f0, vuv_vector.cpu().numpy() def compute_f0(self, wav, p_len=None): x = torch.FloatTensor(wav).to(self.dtype).to(self.device) if p_len is None: print("fcpe p_len is None") p_len = x.shape[0] // self.hop_length f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0, :, 0] if torch.all(f0 == 0): rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len) return rtn, rtn return self.post_process(x, self.sampling_rate, f0, p_len)[0] def compute_f0_uv(self, wav, p_len=None): x = torch.FloatTensor(wav).to(self.dtype).to(self.device) if p_len is None: p_len = x.shape[0] // self.hop_length f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0, :, 0] if torch.all(f0 == 0): rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len) return rtn, rtn return self.post_process(x, self.sampling_rate, f0, p_len)