import gradio as gr from fastai.vision.all import * import skimage #Importing necessary libraries import gradio as gr #import scikit-learn as sklearn from fastai.vision.all import * from sklearn.metrics import roc_auc_score learn = load_learner('export.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Skin Lesion Classifier [RESNET 50]" description = "A skin lesion classifier trained on the ISIC2019 dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces." interpretation='default' enable_queue=True examples = ['img1.jpg','img2.jpg','img3.jpg'] #Launching the gradio application gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(224, 224)), outputs=gr.outputs.Label(num_top_classes=1), title=title, description=description,article=article, examples=examples, enable_queue=enable_queue).launch(inline=False) #gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(224, 224)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()