from fastai.learner import * from fastai.vision.all import * import gradio as gr learn = load_learner("export.pkl") labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} gr.Interface( fn=predict ,inputs=gr.inputs.Image(shape=(512, 512)) ,outputs=gr.outputs.Label(num_top_classes=3) ,examples=['img1.jpg','img2.jpg','img3.jpg'] ).launch(share=False) # import gradio as gr # from fastai.vision.all import * # import skimage # #Importing necessary libraries # import gradio as gr # #import scikit-learn as sklearn # from fastai.vision.all import * # from sklearn.metrics import roc_auc_score # learn = load_learner('export.pkl') # labels = learn.dls.vocab # def predict(img): # img = PILImage.create(img) # pred,pred_idx,probs = learn.predict(img) # return {labels[i]: float(probs[i]) for i in range(len(labels))} # title = "Skin Lesion Classifier [RESNET 50]" # description = "A skin lesion classifier trained on the ISIC2019 dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces." # article="

Link to ISIC Dataset

" # interpretation='default' # enable_queue=True # examples = ['img1.jpg','img2.jpg','img3.jpg'] # #Launching the gradio application # gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)), # outputs=gr.outputs.Label(num_top_classes=1), # title=title, # description=description,article=article, # examples=examples, # enable_queue=enable_queue).launch(inline=False) # #gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(224, 224)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()