import pytest from scraibe import Scraibe, Diariser, Transcriber, Transcript import os @pytest.fixture def create_scraibe_instance(): if "HF_TOKEN" in os.environ: return Scraibe(use_auth_token=os.environ["HF_TOKEN"], whisper_model= "tiny") else: return Scraibe() def test_scraibe_init(create_scraibe_instance): model = create_scraibe_instance assert isinstance(model.transcriber, Transcriber) assert isinstance(model.diariser, Diariser) def test_scraibe_autotranscribe(create_scraibe_instance): model = create_scraibe_instance transcript = model.autotranscribe('tests/audio_test_2.mp4') assert isinstance(transcript, Transcript) def test_scraibe_diarization(create_scraibe_instance): model = create_scraibe_instance diarisation_result = model.diarization('tests/audio_test_2.mp4') assert isinstance(diarisation_result, dict) def test_scraibe_transcribe(create_scraibe_instance): model = create_scraibe_instance transcription_result = model.transcribe('tests/audio_test_2.mp4') assert isinstance(transcription_result, str) """ def test_remove_audio_file(create_scraibe_instance): model = create_scraibe_instance with pytest.raises(ValueError): model.remove_audio_file("non_existing_audio_file") model.remove_audio_file("audio_test_2.mp4") assert not os.path.exists("audio_test_2.mp4") """ """ def test_get_audio_file(create_scraibe_instance): model = create_scraibe_instance audio_file = os.path.exist("audio_test_2.mp4") assert isinstance(audio_file, AudioProcessor) assert isinstance(audio_file.waveform, torch.Tensor) assert isinstance(audio_file.sr, torch.Tensor) """