''' https://github.com/zzh8829/yolov3-tf2 MIT License Copyright (c) 2019 Zihao Zhang Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' from absl import logging import numpy as np import tensorflow as tf import cv2 YOLOV3_LAYER_LIST = [ 'yolo_darknet', 'yolo_conv_0', 'yolo_output_0', 'yolo_conv_1', 'yolo_output_1', 'yolo_conv_2', 'yolo_output_2', ] YOLOV3_TINY_LAYER_LIST = [ 'yolo_darknet', 'yolo_conv_0', 'yolo_output_0', 'yolo_conv_1', 'yolo_output_1', ] def load_darknet_weights(model, weights_file, tiny=False): wf = open(weights_file, 'rb') major, minor, revision, seen, _ = np.fromfile(wf, dtype=np.int32, count=5) if tiny: layers = YOLOV3_TINY_LAYER_LIST else: layers = YOLOV3_LAYER_LIST for layer_name in layers: sub_model = model.get_layer(layer_name) for i, layer in enumerate(sub_model.layers): if not layer.name.startswith('conv2d'): continue batch_norm = None if i + 1 < len(sub_model.layers) and \ sub_model.layers[i + 1].name.startswith('batch_norm'): batch_norm = sub_model.layers[i + 1] logging.info("{}/{} {}".format( sub_model.name, layer.name, 'bn' if batch_norm else 'bias')) filters = layer.filters size = layer.kernel_size[0] in_dim = layer.get_input_shape_at(0)[-1] if batch_norm is None: conv_bias = np.fromfile(wf, dtype=np.float32, count=filters) else: # darknet [beta, gamma, mean, variance] bn_weights = np.fromfile( wf, dtype=np.float32, count=4 * filters) # tf [gamma, beta, mean, variance] bn_weights = bn_weights.reshape((4, filters))[[1, 0, 2, 3]] # darknet shape (out_dim, in_dim, height, width) conv_shape = (filters, in_dim, size, size) conv_weights = np.fromfile( wf, dtype=np.float32, count=np.product(conv_shape)) # tf shape (height, width, in_dim, out_dim) conv_weights = conv_weights.reshape( conv_shape).transpose([2, 3, 1, 0]) if batch_norm is None: layer.set_weights([conv_weights, conv_bias]) else: layer.set_weights([conv_weights]) batch_norm.set_weights(bn_weights) assert len(wf.read()) == 0, 'failed to read all data' wf.close() def broadcast_iou(box_1, box_2): # box_1: (..., (x1, y1, x2, y2)) # box_2: (N, (x1, y1, x2, y2)) # broadcast boxes box_1 = tf.expand_dims(box_1, -2) box_2 = tf.expand_dims(box_2, 0) # new_shape: (..., N, (x1, y1, x2, y2)) new_shape = tf.broadcast_dynamic_shape(tf.shape(box_1), tf.shape(box_2)) box_1 = tf.broadcast_to(box_1, new_shape) box_2 = tf.broadcast_to(box_2, new_shape) int_w = tf.maximum(tf.minimum(box_1[..., 2], box_2[..., 2]) - tf.maximum(box_1[..., 0], box_2[..., 0]), 0) int_h = tf.maximum(tf.minimum(box_1[..., 3], box_2[..., 3]) - tf.maximum(box_1[..., 1], box_2[..., 1]), 0) int_area = int_w * int_h box_1_area = (box_1[..., 2] - box_1[..., 0]) * \ (box_1[..., 3] - box_1[..., 1]) box_2_area = (box_2[..., 2] - box_2[..., 0]) * \ (box_2[..., 3] - box_2[..., 1]) return int_area / (box_1_area + box_2_area - int_area) def draw_outputs(img, outputs, class_names): boxes, objectness, classes, nums = outputs boxes, objectness, classes, nums = boxes[0], objectness[0], classes[0], nums[0] wh = np.flip(img.shape[0:2]) for i in range(nums): x1y1 = tuple((np.array(boxes[i][0:2]) * wh).astype(np.int32)) x2y2 = tuple((np.array(boxes[i][2:4]) * wh).astype(np.int32)) img = cv2.rectangle(img, x1y1, x2y2, (255, 0, 0), 2) img = cv2.putText(img, '{} {:.4f}'.format( class_names[int(classes[i])], objectness[i]), x1y1, cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 2) return img def draw_labels(x, y, class_names): img = x.numpy() boxes, classes = tf.split(y, (4, 1), axis=-1) classes = classes[..., 0] wh = np.flip(img.shape[0:2]) for i in range(len(boxes)): x1y1 = tuple((np.array(boxes[i][0:2]) * wh).astype(np.int32)) x2y2 = tuple((np.array(boxes[i][2:4]) * wh).astype(np.int32)) img = cv2.rectangle(img, x1y1, x2y2, (255, 0, 0), 2) img = cv2.putText(img, class_names[classes[i]], x1y1, cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 2) return img def freeze_all(model, frozen=True): model.trainable = not frozen if isinstance(model, tf.keras.Model): for l in model.layers: freeze_all(l, frozen)