''' https://github.com/zzh8829/yolov3-tf2 MIT License Copyright (c) 2019 Zihao Zhang Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' from absl import flags from absl.flags import FLAGS import numpy as np import tensorflow as tf from tensorflow.keras import Model from tensorflow.keras.layers import ( Add, Concatenate, Conv2D, Input, Lambda, LeakyReLU, MaxPool2D, UpSampling2D, ZeroPadding2D, BatchNormalization, ) from tensorflow.keras.regularizers import l2 from tensorflow.keras.losses import ( binary_crossentropy, sparse_categorical_crossentropy ) from utils import broadcast_iou flags.DEFINE_integer('yolo_max_boxes', 100, 'maximum number of boxes per image') #flags.DEFINE_float('yolo_iou_threshold', 0.1, 'iou threshold') #flags.DEFINE_float('yolo_score_threshold', 0.1, 'score threshold') yolo_anchors = np.array([(10, 13), (16, 30), (33, 23), (30, 61), (62, 45), (59, 119), (116, 90), (156, 198), (373, 326)], np.float32) / 416 yolo_anchor_masks = np.array([[6, 7, 8], [3, 4, 5], [0, 1, 2]]) yolo_tiny_anchors = np.array([(10, 14), (23, 27), (37, 58), (81, 82), (135, 169), (344, 319)], np.float32) / 416 yolo_tiny_anchor_masks = np.array([[3, 4, 5], [0, 1, 2]]) def DarknetConv(x, filters, size, strides=1, batch_norm=True): if strides == 1: padding = 'same' else: x = ZeroPadding2D(((1, 0), (1, 0)))(x) # top left half-padding padding = 'valid' x = Conv2D(filters=filters, kernel_size=size, strides=strides, padding=padding, use_bias=not batch_norm, kernel_regularizer=l2(0.0005))(x) if batch_norm: x = BatchNormalization()(x) x = LeakyReLU(alpha=0.1)(x) return x def DarknetResidual(x, filters): prev = x x = DarknetConv(x, filters // 2, 1) x = DarknetConv(x, filters, 3) x = Add()([prev, x]) return x def DarknetBlock(x, filters, blocks): x = DarknetConv(x, filters, 3, strides=2) for _ in range(blocks): x = DarknetResidual(x, filters) return x def Darknet(name=None): x = inputs = Input([None, None, 3]) x = DarknetConv(x, 32, 3) x = DarknetBlock(x, 64, 1) x = DarknetBlock(x, 128, 2) # skip connection x = x_36 = DarknetBlock(x, 256, 8) # skip connection x = x_61 = DarknetBlock(x, 512, 8) x = DarknetBlock(x, 1024, 4) return tf.keras.Model(inputs, (x_36, x_61, x), name=name) def DarknetTiny(name=None): x = inputs = Input([None, None, 3]) x = DarknetConv(x, 16, 3) x = MaxPool2D(2, 2, 'same')(x) x = DarknetConv(x, 32, 3) x = MaxPool2D(2, 2, 'same')(x) x = DarknetConv(x, 64, 3) x = MaxPool2D(2, 2, 'same')(x) x = DarknetConv(x, 128, 3) x = MaxPool2D(2, 2, 'same')(x) x = x_8 = DarknetConv(x, 256, 3) # skip connection x = MaxPool2D(2, 2, 'same')(x) x = DarknetConv(x, 512, 3) x = MaxPool2D(2, 1, 'same')(x) x = DarknetConv(x, 1024, 3) return tf.keras.Model(inputs, (x_8, x), name=name) def YoloConv(filters, name=None): def yolo_conv(x_in): if isinstance(x_in, tuple): inputs = Input(x_in[0].shape[1:]), Input(x_in[1].shape[1:]) x, x_skip = inputs # concat with skip connection x = DarknetConv(x, filters, 1) x = UpSampling2D(2)(x) x = Concatenate()([x, x_skip]) else: x = inputs = Input(x_in.shape[1:]) x = DarknetConv(x, filters, 1) x = DarknetConv(x, filters * 2, 3) x = DarknetConv(x, filters, 1) x = DarknetConv(x, filters * 2, 3) x = DarknetConv(x, filters, 1) return Model(inputs, x, name=name)(x_in) return yolo_conv def YoloConvTiny(filters, name=None): def yolo_conv(x_in): if isinstance(x_in, tuple): inputs = Input(x_in[0].shape[1:]), Input(x_in[1].shape[1:]) x, x_skip = inputs # concat with skip connection x = DarknetConv(x, filters, 1) x = UpSampling2D(2)(x) x = Concatenate()([x, x_skip]) else: x = inputs = Input(x_in.shape[1:]) x = DarknetConv(x, filters, 1) return Model(inputs, x, name=name)(x_in) return yolo_conv def YoloOutput(filters, anchors, classes, name=None): def yolo_output(x_in): x = inputs = Input(x_in.shape[1:]) x = DarknetConv(x, filters * 2, 3) x = DarknetConv(x, anchors * (classes + 5), 1, batch_norm=False) x = Lambda(lambda x: tf.reshape(x, (-1, tf.shape(x)[1], tf.shape(x)[2], anchors, classes + 5)))(x) return tf.keras.Model(inputs, x, name=name)(x_in) return yolo_output # As tensorflow lite doesn't support tf.size used in tf.meshgrid, # we reimplemented a simple meshgrid function that use basic tf function. def _meshgrid(n_a, n_b): return [ tf.reshape(tf.tile(tf.range(n_a), [n_b]), (n_b, n_a)), tf.reshape(tf.repeat(tf.range(n_b), n_a), (n_b, n_a)) ] def yolo_boxes(pred, anchors, classes): # pred: (batch_size, grid, grid, anchors, (x, y, w, h, obj, ...classes)) grid_size = tf.shape(pred)[1:3] box_xy, box_wh, objectness, class_probs = tf.split( pred, (2, 2, 1, classes), axis=-1) box_xy = tf.sigmoid(box_xy) objectness = tf.sigmoid(objectness) class_probs = tf.sigmoid(class_probs) pred_box = tf.concat((box_xy, box_wh), axis=-1) # original xywh for loss # !!! grid[x][y] == (y, x) grid = _meshgrid(grid_size[1], grid_size[0]) grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2) # [gx, gy, 1, 2] box_xy = (box_xy + tf.cast(grid, tf.float32)) / \ tf.cast(grid_size, tf.float32) box_wh = tf.exp(box_wh) * anchors box_x1y1 = box_xy - box_wh / 2 box_x2y2 = box_xy + box_wh / 2 bbox = tf.concat([box_x1y1, box_x2y2], axis=-1) return bbox, objectness, class_probs, pred_box def yolo_nms(outputs, anchors, masks, classes): # boxes, conf, type b, c, t = [], [], [] for o in outputs: b.append(tf.reshape(o[0], (tf.shape(o[0])[0], -1, tf.shape(o[0])[-1]))) c.append(tf.reshape(o[1], (tf.shape(o[1])[0], -1, tf.shape(o[1])[-1]))) t.append(tf.reshape(o[2], (tf.shape(o[2])[0], -1, tf.shape(o[2])[-1]))) bbox = tf.concat(b, axis=1) confidence = tf.concat(c, axis=1) class_probs = tf.concat(t, axis=1) # If we only have one class, do not multiply by class_prob (always 0.5) if classes == 1: scores = confidence else: scores = confidence * class_probs dscores = tf.squeeze(scores, axis=0) scores = tf.reduce_max(dscores, [1]) bbox = tf.reshape(bbox, (-1, 4)) classes = tf.argmax(dscores, 1) print(tf.reduce_max(scores)) selected_indices, selected_scores = tf.image.non_max_suppression_with_scores( boxes=bbox, scores=scores, max_output_size=FLAGS.yolo_max_boxes, iou_threshold=FLAGS.yolo_iou_threshold, score_threshold=0.01, #FLAGS.yolo_score_threshold, soft_nms_sigma=0.5 ) num_valid_nms_boxes = tf.shape(selected_indices)[0] selected_indices = tf.concat([selected_indices, tf.zeros( FLAGS.yolo_max_boxes-num_valid_nms_boxes, tf.int32)], 0) selected_scores = tf.concat([selected_scores, tf.zeros( FLAGS.yolo_max_boxes-num_valid_nms_boxes, tf.float32)], -1) boxes = tf.gather(bbox, selected_indices) boxes = tf.expand_dims(boxes, axis=0) scores = selected_scores scores = tf.expand_dims(scores, axis=0) classes = tf.gather(classes, selected_indices) classes = tf.expand_dims(classes, axis=0) valid_detections = num_valid_nms_boxes valid_detections = tf.expand_dims(valid_detections, axis=0) return boxes, scores, classes, valid_detections def YoloV3(size=None, channels=3, anchors=yolo_anchors, masks=yolo_anchor_masks, classes=80, training=False): x = inputs = Input([size, size, channels], name='input') x_36, x_61, x = Darknet(name='yolo_darknet')(x) x = YoloConv(512, name='yolo_conv_0')(x) output_0 = YoloOutput(512, len(masks[0]), classes, name='yolo_output_0')(x) x = YoloConv(256, name='yolo_conv_1')((x, x_61)) output_1 = YoloOutput(256, len(masks[1]), classes, name='yolo_output_1')(x) x = YoloConv(128, name='yolo_conv_2')((x, x_36)) output_2 = YoloOutput(128, len(masks[2]), classes, name='yolo_output_2')(x) if training: return Model(inputs, (output_0, output_1, output_2), name='yolov3') boxes_0 = Lambda(lambda x: yolo_boxes(x, anchors[masks[0]], classes), name='yolo_boxes_0')(output_0) boxes_1 = Lambda(lambda x: yolo_boxes(x, anchors[masks[1]], classes), name='yolo_boxes_1')(output_1) boxes_2 = Lambda(lambda x: yolo_boxes(x, anchors[masks[2]], classes), name='yolo_boxes_2')(output_2) outputs = Lambda(lambda x: yolo_nms(x, anchors, masks, classes), name='yolo_nms')((boxes_0[:3], boxes_1[:3], boxes_2[:3])) return Model(inputs, outputs, name='yolov3') def YoloV3Tiny(size=None, channels=3, anchors=yolo_tiny_anchors, masks=yolo_tiny_anchor_masks, classes=80, training=False): x = inputs = Input([size, size, channels], name='input') x_8, x = DarknetTiny(name='yolo_darknet')(x) x = YoloConvTiny(256, name='yolo_conv_0')(x) output_0 = YoloOutput(256, len(masks[0]), classes, name='yolo_output_0')(x) x = YoloConvTiny(128, name='yolo_conv_1')((x, x_8)) output_1 = YoloOutput(128, len(masks[1]), classes, name='yolo_output_1')(x) if training: return Model(inputs, (output_0, output_1), name='yolov3') boxes_0 = Lambda(lambda x: yolo_boxes(x, anchors[masks[0]], classes), name='yolo_boxes_0')(output_0) boxes_1 = Lambda(lambda x: yolo_boxes(x, anchors[masks[1]], classes), name='yolo_boxes_1')(output_1) outputs = Lambda(lambda x: yolo_nms(x, anchors, masks, classes), name='yolo_nms')((boxes_0[:3], boxes_1[:3])) return Model(inputs, outputs, name='yolov3_tiny') def YoloLoss(anchors, classes=80, ignore_thresh=0.5): def yolo_loss(y_true, y_pred): # 1. transform all pred outputs # y_pred: (batch_size, grid, grid, anchors, (x, y, w, h, obj, ...cls)) pred_box, pred_obj, pred_class, pred_xywh = yolo_boxes( y_pred, anchors, classes) pred_xy = pred_xywh[..., 0:2] pred_wh = pred_xywh[..., 2:4] # 2. transform all true outputs # y_true: (batch_size, grid, grid, anchors, (x1, y1, x2, y2, obj, cls)) true_box, true_obj, true_class_idx = tf.split( y_true, (4, 1, 1), axis=-1) true_xy = (true_box[..., 0:2] + true_box[..., 2:4]) / 2 true_wh = true_box[..., 2:4] - true_box[..., 0:2] # give higher weights to small boxes box_loss_scale = 2 - true_wh[..., 0] * true_wh[..., 1] # 3. inverting the pred box equations grid_size = tf.shape(y_true)[1] grid = tf.meshgrid(tf.range(grid_size), tf.range(grid_size)) grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2) true_xy = true_xy * tf.cast(grid_size, tf.float32) - \ tf.cast(grid, tf.float32) true_wh = tf.math.log(true_wh / anchors) true_wh = tf.where(tf.math.is_inf(true_wh), tf.zeros_like(true_wh), true_wh) # 4. calculate all masks obj_mask = tf.squeeze(true_obj, -1) # ignore false positive when iou is over threshold best_iou = tf.map_fn( lambda x: tf.reduce_max(broadcast_iou(x[0], tf.boolean_mask( x[1], tf.cast(x[2], tf.bool))), axis=-1), (pred_box, true_box, obj_mask), tf.float32) ignore_mask = tf.cast(best_iou < ignore_thresh, tf.float32) # 5. calculate all losses xy_loss = obj_mask * box_loss_scale * \ tf.reduce_sum(tf.square(true_xy - pred_xy), axis=-1) wh_loss = obj_mask * box_loss_scale * \ tf.reduce_sum(tf.square(true_wh - pred_wh), axis=-1) obj_loss = binary_crossentropy(true_obj, pred_obj) obj_loss = obj_mask * obj_loss + \ (1 - obj_mask) * ignore_mask * obj_loss # TODO: use binary_crossentropy instead class_loss = obj_mask * sparse_categorical_crossentropy( true_class_idx, pred_class) # 6. sum over (batch, gridx, gridy, anchors) => (batch, 1) xy_loss = tf.reduce_sum(xy_loss, axis=(1, 2, 3)) wh_loss = tf.reduce_sum(wh_loss, axis=(1, 2, 3)) obj_loss = tf.reduce_sum(obj_loss, axis=(1, 2, 3)) class_loss = tf.reduce_sum(class_loss, axis=(1, 2, 3)) return xy_loss + wh_loss + obj_loss + class_loss return yolo_loss