import gradio as gr from huggingface_hub import hf_hub_download from PIL import Image import yolov5 # Model model_file = hf_hub_download(repo_id="HugoSchtr/yolov5_datacat", filename="best.pt") model = yolov5.load(model_file) def predict(im, threshold=0.50): # g = (size / max(im.size)) # gain # im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize model.conf = threshold results = model(im) # inference numpy_image = results.render()[0] output_image = Image.fromarray(numpy_image) return output_image title = "YOLOv5 - Auction sale catalogues layout analysis" description = "
YOLOv5 Gradio demo for auction sales catalogues layout analysis. Detecting titles and catalogues entries.
" article = "YOLOv5 source code : Source code | PyTorch Hub
" examples = [['./img_examples/12148-bpt6k1240127r.pdf_page_20.png', 0.50], ['./img_examples/12148-bpt6k1240127r.pdf_page_21.png', 0.50], ['./img_examples/12148-bpt6k1240127r.pdf_page_27.png', 0.50]] demo=gr.Interface(fn=predict, inputs=[gr.Image(type="pil", label="document image"), gr.Slider(maximum=1, step=0.01, value=0.50)], outputs=gr.Image(type="pil", label="annotated document").style(height=700), title=title, description=description, article=article, examples=examples, theme="huggingface") if __name__ == "__main__": demo.launch(debug=True)