import dataclasses import gc import json import logging from contextlib import contextmanager from enum import Enum import accelerate import psutil import pynvml import torch import torch.nn as nn import torchvision.transforms as transforms from accelerate.state import AcceleratorState from PIL import Image from transformers import ( # AddedToken is needed for the eval of the tokenizer params # noqa: F401 AddedToken, AutoTokenizer, ) IMAGE_TOKEN = "" FAKE_TOKEN_AROUND_IMAGE_V2 = "" FAKE_TOKEN_AROUND_IMAGE_V1 = "\n\n" # Originally taken from the values used in OpenCLIP IMAGE_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073) IMAGE_DATASET_STD = (0.26862954, 0.26130258, 0.27577711) logger = logging.getLogger(__name__) class LoggingTypes(Enum): """Types of logging to use for the gradient and parameter statistics""" JSONL = "jsonl" WANDB = "wandb" PRINT = "print" class JSONEncoderForDataclasses(json.JSONEncoder): """ Use to serialize dataclass object, like so: json.dump(data, fp, indent=2, cls=JSONEncoderForDataclasses) """ def default(self, obj): if dataclasses.is_dataclass(obj): return dataclasses.asdict(obj) return super().default(obj) def freeze_model(model, module_exceptions=[]): mapping = { "LayerNorm": nn.LayerNorm, "Linear": nn.Linear, "Embedding": nn.Embedding, } module_exceptions_mapped = [mapping[m] for m in module_exceptions] for module in model.modules(): if module_exceptions and any([isinstance(module, t) for t in module_exceptions_mapped]): module.requires_grad_(True) # Explicitly setting it to true to avoid any mistakes else: module.requires_grad_(False) return model def _convert_to_rgb(image): # `image.convert("RGB")` would only work for .jpg images, as it creates # a wrong background for transparent images. The call to `alpha_composite` # handles this case if image.mode == "RGB": return image image_rgba = image.convert("RGBA") background = Image.new("RGBA", image_rgba.size, (255, 255, 255)) alpha_composite = Image.alpha_composite(background, image_rgba) alpha_composite = alpha_composite.convert("RGB") return alpha_composite # TODO(aps): Take parameters from config def build_image_transform(image_size=224, eval=False): return transforms.Compose( [ _convert_to_rgb, ( transforms.Resize((image_size, image_size), interpolation=transforms.InterpolationMode.BICUBIC) if eval else transforms.RandomResizedCrop( (image_size, image_size), scale=(0.9, 1.0), interpolation=transforms.InterpolationMode.BICUBIC ) ), transforms.ToTensor(), transforms.Normalize(mean=IMAGE_DATASET_MEAN, std=IMAGE_DATASET_STD), ] ) def get_tokenizer( tokenizer_name: str, tokenizer_add_tokens, tokenizer_add_special_tokens, tokenizer_params, additional_vocab_size, model_vocab_size=None, ): """ We artificially separate `tokenizer_add_tokens` and `tokenizer_add_special_tokens` is a dictionary whose keys only takes into account special tokens (eos, pad, cls, etc.). On the contrary, `tokenizer_add_tokens` is a list of string of `AddedToken`. In practise, we use `tokenizer.add_special_tokens` to add all of these new special tokens or update the existing ones. NB: we constraint to tokenizer to be a fast tokenizer because with the slow tokenizer, we can't set the arguments of the added tokens (cf `.add_tokens`) and by default, the separators are stripped. """ tokenizer_params = eval(tokenizer_params) assert isinstance(tokenizer_params, dict) tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, **tokenizer_params) if model_vocab_size is not None: if model_vocab_size > len(tokenizer): logger.warning( f"The model vocabulary size ({model_vocab_size}) is larger than the tokenizer vocabulary size " f"({len(tokenizer)}). Updating the tokenizer to match." ) if "additional_special_tokens" in tokenizer_params: raise ValueError( "You can't use `additional_special_tokens` in `tokenizer_params` with a model vocab " "size > tokenizer vocab size. We need to adjust tokenizer before adding special " "tokens. Please use `tokenizer_add_tokens` instead." ) # We need to pad the tokenizer vocab with fake tokens tokenizer.add_tokens(["".format(i) for i in range(model_vocab_size - len(tokenizer))]) assert str(eval(tokenizer_add_tokens)[-1]) == IMAGE_TOKEN assert str(eval(tokenizer_add_tokens)[-2]) == FAKE_TOKEN_AROUND_IMAGE_V2 # This check ensures that the image token and the fake token around it will be in the `DecoupledEmbedding.additional_weight`. existing_special_tokens = ( [*tokenizer.special_tokens_map_extended["additional_special_tokens"]] if "additional_special_tokens" in tokenizer.special_tokens_map_extended else [] ) add_special_tokens_dict = {"additional_special_tokens": existing_special_tokens + eval(tokenizer_add_tokens)} if tokenizer_add_special_tokens is not None: add_special_tokens_dict.update(eval(tokenizer_add_special_tokens)) tokenizer.add_special_tokens(add_special_tokens_dict) assert IMAGE_TOKEN in tokenizer.convert_ids_to_tokens( [idx for idx in range(len(tokenizer) - additional_vocab_size, len(tokenizer))] ) assert FAKE_TOKEN_AROUND_IMAGE_V2 in tokenizer.convert_ids_to_tokens( [idx for idx in range(len(tokenizer) - additional_vocab_size, len(tokenizer))] ) # This verifies that `` was correctly added to the tokenizer vocabulary # XXX: opt-1.3b fails here # assert tokenizer.is_fast == tokenizer_params.get("use_fast", True) return tokenizer def pynmvl_handle(accelerator): if not torch.cuda.is_available(): return None pynvml.nvmlInit() return pynvml.nvmlDeviceGetHandleByIndex(accelerator.local_process_index) def pynvml_get_total_energy_in_joules(handle): if not torch.cuda.is_available(): return 0 return pynvml.nvmlDeviceGetTotalEnergyConsumption(handle) / 1000 def compute_tflops_per_batch_per_gpu( num_layers, batch_size, q_seq_len, k_seq_len, hidden_size, kv_in_dim, ff_exp_factor=None, grad_acc_size=1, swiglu=False, vocab_size=None, count_backward=False, use_grad_checkpointing=False, ): multiply_add_factor = torch.tensor(2) query_transformation = multiply_add_factor * batch_size * q_seq_len * hidden_size**2 # k_seq_len == v_seq_len key_value_transformation = multiply_add_factor * batch_size * k_seq_len * (2 * hidden_size * kv_in_dim) attention_matrix_computation = multiply_add_factor * batch_size * q_seq_len * k_seq_len * hidden_size attention_softmax = multiply_add_factor * q_seq_len * k_seq_len att_over_values_computation = multiply_add_factor * batch_size * q_seq_len * k_seq_len * hidden_size post_attention_linear_proj = multiply_add_factor * batch_size * q_seq_len * hidden_size**2 # There are usually 2 expansion_linear_layers because first one expands, and second one retracts back to hidden_size # When using a classic decoder, some blocks don't have those feed-forward layers # Swiglu duplicates the first linear layer, so we have to account for 3 of them instead of 2 if ff_exp_factor and swiglu: expansion_linear_layers = 3 * ( multiply_add_factor * batch_size * q_seq_len * (hidden_size * ff_exp_factor) * hidden_size ) elif ff_exp_factor: expansion_linear_layers = 2 * ( multiply_add_factor * batch_size * q_seq_len * (hidden_size * ff_exp_factor) * hidden_size ) else: expansion_linear_layers = torch.tensor(0) transformer_block_flops = ( query_transformation + key_value_transformation + attention_matrix_computation + attention_softmax + att_over_values_computation + post_attention_linear_proj + expansion_linear_layers ) # This computation should only be added if the model has a language head if vocab_size: language_head_computation = multiply_add_factor * batch_size * q_seq_len * hidden_size * vocab_size else: language_head_computation = torch.tensor(0) forward_fact = 1 backward_factor = 2 if count_backward else 0 grad_checkpointing_factor = 1 if use_grad_checkpointing else 0 model_flops = (forward_fact + backward_factor + grad_checkpointing_factor) * ( num_layers * transformer_block_flops + language_head_computation ) model_tflops = model_flops / (10**12) return model_tflops def compute_perceiver_tflops_per_batch_per_gpu( num_layers, batch_size, q_seq_len, vision_embed_seq_len, q_k_v_input_dim, attention_hidden_size, ff_exp_factor=None, count_backward=False, use_grad_checkpointing=False, ): multiply_add_factor = torch.tensor(2) query_transformation = multiply_add_factor * batch_size * q_seq_len * q_k_v_input_dim * attention_hidden_size # k_seq_len == v_seq_len key_value_transformation = ( multiply_add_factor * batch_size * vision_embed_seq_len * (2 * attention_hidden_size * q_k_v_input_dim) ) k_seq_len = vision_embed_seq_len + q_seq_len attention_matrix_computation = multiply_add_factor * batch_size * q_seq_len * k_seq_len * attention_hidden_size attention_softmax = multiply_add_factor * q_seq_len * k_seq_len att_over_values_computation = multiply_add_factor * batch_size * q_seq_len * k_seq_len * attention_hidden_size post_attention_linear_proj = multiply_add_factor * batch_size * q_seq_len * attention_hidden_size * q_k_v_input_dim # There are usually 2 expansion_linear_layers because first one expands, and second one retracts back to hidden_size # When using a classic decoder, some blocks don't have those feed-forward layers if ff_exp_factor: expansion_linear_layers = 2 * ( multiply_add_factor * batch_size * q_seq_len * (q_k_v_input_dim * ff_exp_factor) * q_k_v_input_dim ) else: expansion_linear_layers = torch.tensor(0) transformer_block_flops = ( query_transformation + key_value_transformation + attention_matrix_computation + attention_softmax + att_over_values_computation + post_attention_linear_proj + expansion_linear_layers ) forward_fact = 1 backward_factor = 2 if count_backward else 0 grad_checkpointing_factor = 1 if use_grad_checkpointing else 0 model_flops = (forward_fact + backward_factor + grad_checkpointing_factor) * (num_layers * transformer_block_flops) model_tflops = model_flops / (10**12) return model_tflops def mem_usage_formatted(logging_type=LoggingTypes.PRINT): # adapted from deepspeed's see_memory_usage torch.cuda.empty_cache() # python doesn't do real-time garbage collection so do it explicitly to get the correct usage reports gc.collect() vm_stats = psutil.virtual_memory() mem = { "gpu mem alloc": f"{torch.cuda.memory_allocated()/2**30:0.2f}GB", "max alloc": f"{torch.cuda.max_memory_allocated()/2**30:0.2f}GB", "reserv": f"{torch.cuda.memory_reserved()/2**30:0.2f}GB", "max reserv": f"{torch.cuda.max_memory_reserved()/2**30:0.2f}GB", "cpu vm used": f"{(vm_stats.total-vm_stats.available)/2**30:0.2f}GB {vm_stats.percent}%", } if logging_type == LoggingTypes.PRINT: mem = " | ".join([f"{k}: {v}" for k, v in mem.items()]) + " | " # get the peak memory to report correct data, so reset the max_memory_allocated counter for the next call torch.cuda.reset_peak_memory_stats() return mem def is_deepspeed_used(): deepspeed_plugin = get_deepspeed_plugin() return deepspeed_plugin is not None def get_deepspeed_stage(): deepspeed_plugin = get_deepspeed_plugin() if deepspeed_plugin is None: return 0 ds_config = deepspeed_plugin.deepspeed_config stage = ds_config.get("zero_optimization", {}).get("stage", 0) # from accelerate>=0.17.1 can do instead: # stage = deepspeed_plugin.zero_stage return stage def is_deepspeed_zero3_used(): return get_deepspeed_stage() == 3 def accelerate_torch_dtype(): """ derive and return `torch_dtype` to be used in `from_pretrained` from either Deepspeed config or if Deepspeed isn't used than accelerator state """ if not is_accelerate_initialized(): return None accelerator_state = AcceleratorState() if is_deepspeed_used(): deepspeed_plugin = accelerator_state.deepspeed_plugin ds_config = deepspeed_plugin.deepspeed_config if ds_config.get("fp16", {}).get("enabled", False): torch_dtype = torch.float16 elif ds_config.get("bf16", {}).get("enabled", False): torch_dtype = torch.bfloat16 else: torch_dtype = None else: # no Deepspeed if accelerator_state.mixed_precision == "fp16": torch_dtype = torch.float16 elif accelerator_state.mixed_precision == "bf16": torch_dtype = torch.bfloat16 else: torch_dtype = None return torch_dtype def is_accelerate_initialized(): return accelerate.state.is_initialized() def get_deepspeed_plugin(): if is_accelerate_initialized(): return AcceleratorState().deepspeed_plugin else: return None def get_deepspeed_engine(accelerator): return accelerator.deepspeed_engine_wrapped.engine def is_deepspeed_zero_init_enabled(): deepspeed_plugin = get_deepspeed_plugin() if deepspeed_plugin is not None: return deepspeed_plugin.is_zero3_init_enabled() else: return False @contextmanager def hf_trainer_disable_zero3_init_context_manager(): # monkey patch hack to emulate a context that has zero_init disabled as it's used in # modeling_utils.py in transformers for from_config and from_pretrained. import transformers.modeling_utils # noqa orig = transformers.modeling_utils.is_deepspeed_zero3_enabled transformers.modeling_utils.is_deepspeed_zero3_enabled = lambda: False yield transformers.modeling_utils.is_deepspeed_zero3_enabled = orig def deepspeed_zero_init_disabled_context_manager(): """ returns either a context list that includes one that will disable zero.Init or an empty context list """ deepspeed_plugin = get_deepspeed_plugin() if deepspeed_plugin is not None: return [deepspeed_plugin.zero3_init_context_manager(enable=False)] else: return [hf_trainer_disable_zero3_init_context_manager()] def deepspeed_gathered_parameters_context_manager(params, modify=True): """ Under zero.Init returns a context manager that will gather the sharded param, otherwise returns an empty list If `modify` is `True`, gather the shards and once the context exits update the shards with the modified data - one wants that when modifying the gathered param. If one wants to just gather the shards in order to read the param and no modifications are done to it, use `modify=False` as it's more efficient. `params` - can be a single parameter, a list, or a tuple of parameters to collect. Example: from transformers.utils import ContextManagers from m4.training.utils import deepspeed_gathered_parameters_context_manager with ContextManagers(deepspeed_gathered_parameters_context_manager(module.weight, modify=True)): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() """ if is_deepspeed_zero_init_enabled(): import deepspeed # 0 is for updating `params` shards after modifying it, `None` is for read-only (only gather) modifier_rank = 0 if modify else None return [deepspeed.zero.GatheredParameters(params, modifier_rank=modifier_rank)] else: return [] # adapted from https://github.com/huggingface/transformers/blob/a081f292ca8479eaf66d7396186021268f128829/src/transformers/modeling_utils.py#L438-L496 # as it appears to be a private function def load_state_dict_into_model(model_to_load, state_dict, start_prefix): # Convert old format to new format if needed from a PyTorch state_dict old_keys = [] new_keys = [] for key in state_dict.keys(): new_key = None if "gamma" in key: new_key = key.replace("gamma", "weight") if "beta" in key: new_key = key.replace("beta", "bias") if new_key: old_keys.append(key) new_keys.append(new_key) for old_key, new_key in zip(old_keys, new_keys): state_dict[new_key] = state_dict.pop(old_key) # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, "_metadata", None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata error_msgs = [] # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants # so we need to apply the function recursively. def load(module: torch.nn.Module, state_dict, prefix=""): local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) args = (state_dict, prefix, local_metadata, True, [], [], error_msgs) # Parameters of module and children will start with prefix. We can exit early if there are none in this # state_dict if len([key for key in state_dict if key.startswith(prefix)]) > 0: if is_deepspeed_zero_init_enabled(): import deepspeed # In sharded models, each shard has only part of the full state_dict, so only gather # parameters that are in the current state_dict. named_parameters = dict(module.named_parameters(prefix=prefix[:-1], recurse=False)) params_to_gather = [named_parameters[k] for k in state_dict.keys() if k in named_parameters] if len(params_to_gather) > 0: # because zero3 puts placeholders in model params, this context # manager gathers (unpartitions) the params of the current layer, then loads from # the state dict and then re-partitions them again with deepspeed.zero.GatheredParameters(params_to_gather, modifier_rank=0): if torch.distributed.get_rank() == 0: module._load_from_state_dict(*args) else: module._load_from_state_dict(*args) for name, child in module._modules.items(): if child is not None: load(child, state_dict, prefix + name + ".") load(model_to_load, state_dict, prefix=start_prefix) # Delete `state_dict` so it could be collected by GC earlier. Note that `state_dict` is a copy of the argument, so # it's safe to delete it. del state_dict return error_msgs def get_stats(var, ctx): if var is None: return {} var = var.float() abs_var = var.abs() return { f"{ctx}_var_min": var.min().item(), f"{ctx}_var_max": var.max().item(), f"{ctx}_var_mean": var.mean().item(), f"{ctx}_var_std": var.std().item(), f"{ctx}_abs_var_min": abs_var.min().item(), f"{ctx}_abs_var_max": abs_var.max().item(), f"{ctx}_abs_var_mean": abs_var.mean().item(), f"{ctx}_abs_var_std": abs_var.std().item(), f"{ctx}_var_norm_2": (var.norm(p=2) / var.numel()).item(), f"{ctx}_var_norm_1": (var.norm(p=1) / var.numel()).item(), f"{ctx}_nonzero": (var != 0).sum().item(), } def get_stats_format(ctx): return { f"{ctx}_var_min": "e", f"{ctx}_var_max": "e", f"{ctx}_var_mean": "e", f"{ctx}_var_std": "e", f"{ctx}_abs_var_min": "e", f"{ctx}_abs_var_max": "e", f"{ctx}_abs_var_mean": "e", f"{ctx}_abs_var_std": "e", f"{ctx}_var_norm_2": "e", f"{ctx}_var_norm_1": "e", f"{ctx}_nonzero": "", }