# coding=utf-8 # Copyright 2021 The Eleuther AI and HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch GPT Neo model.""" import os from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from transformers.activations import ACT2FN from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from m4.models import DecoupledEmbedding, DecoupledLinear from m4.models.common import ( expand_inputs_for_generation, prepare_inputs_for_generation, update_model_kwargs_for_generation, ) from m4.models.custom_modules import VLOOMPreTrainedModelBase from m4.models.perceiver.perceiver import PerceiverResampler from m4.models.vgpt_neo.configuration_vgpt_neo import VGPTNeoConfig from m4.training.utils import ( compute_perceiver_tflops_per_batch_per_gpu, compute_tflops_per_batch_per_gpu, freeze_model, ) from m4.utils import logging logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "EleutherAI/gpt-neo-1.3B" _CONFIG_FOR_DOC = "VGPTNeoConfig" _TOKENIZER_FOR_DOC = "GPT2Tokenizer" GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST = [ "EleutherAI/gpt-neo-125M", "EleutherAI/gpt-neo-1.3B", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo ] def load_tf_weights_in_gpt_neo(model, config, gpt_neo_checkpoint_path): """Load tf checkpoints in a pytorch model""" try: import re import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(gpt_neo_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: if "global_step" not in name and "adam" not in name: array = tf.train.load_variable(tf_path, name) array = tf.dtypes.cast(array.squeeze(), tf.float32).numpy() name = name.replace("attn/q", "attn/attention/q_proj/w") name = name.replace("attn/k", "attn/attention/k_proj/w") name = name.replace("attn/v", "attn/attention/v_proj/w") name = name.replace("attn/o", "attn/attention/out_proj/w") name = name.replace("norm_1", "ln_1") name = name.replace("norm_2", "ln_2") name = name.replace("attn/compute_output_bias/o_b", "attn/attention/out_proj/b") name = name.replace("conv1d_main/c_fc/kernel", "c_fc/w") name = name.replace("conv1d_main/c_fc/bias", "c_fc/b") name = name.replace("conv1d_main/c_proj/kernel", "c_proj/w") name = name.replace("conv1d_main/c_proj/bias", "c_proj/b") names.append(name) arrays.append(array) for name, array in zip(names, arrays): name = name[5:] # skip "gpt2/" name = name.split("/") pointer = model.transformer for m_name in name: if re.fullmatch(r"[A-Za-z]+\d+", m_name): scope_names = re.split(r"(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "w" or scope_names[0] == "g": pointer = getattr(pointer, "weight") elif scope_names[0] == "b": pointer = getattr(pointer, "bias") elif scope_names[0] == "wpe" or scope_names[0] == "wte": pointer = getattr(pointer, scope_names[0]) pointer = getattr(pointer, "weight") else: pointer = getattr(pointer, scope_names[0]) if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if name[-1] == "w" and name[-2] in ["out_proj", "k_proj", "q_proj", "v_proj", "c_proj", "c_fc"]: array = array.transpose() if name == ["wte"]: # if vocab is padded, then trim off the padding embeddings array = array[: config.vocab_size] if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched {name}") print(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array) # init the final linear layer using word embeddings embs = model.transformer.wte.weight lin = nn.Linear(embs.size()[1], embs.size()[0], bias=False) lin.weight = embs model.set_output_embeddings(lin) return model class GPTNeoSelfAttention(nn.Module): def __init__(self, config, attention_type, is_cross_attention=False): super().__init__() max_positions = config.max_position_embeddings bias = torch.tril(torch.ones((max_positions, max_positions), dtype=torch.uint8)).view( 1, 1, max_positions, max_positions ) # local causal self attention is a sliding window where each token can only attend to the previous # window_size tokens. This is implemented by updating the causal mask such that for each token # all other tokens are masked except the previous window_size tokens. if attention_type == "local": bias = torch.bitwise_xor(bias, torch.tril(bias, -config.window_size)) self.is_cross_attention = is_cross_attention self.register_buffer("bias", bias) self.register_buffer("masked_bias", torch.tensor(-1e9)) self.attn_dropout = nn.Dropout(float(config.attention_dropout)) self.resid_dropout = nn.Dropout(float(config.resid_dropout)) self.embed_dim = config.hidden_size self.num_heads = config.num_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) if self.is_cross_attention: in_dim = self.embed_dim if not hasattr(config, "vision_embed_dim") else config.vision_embed_dim self.k_proj = nn.Linear(in_dim, self.embed_dim, bias=False) self.v_proj = nn.Linear(in_dim, self.embed_dim, bias=False) else: self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=True) def _split_heads(self, tensor, num_heads, attn_head_size): """ Splits hidden_size dim into attn_head_size and num_heads """ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size) tensor = tensor.view(new_shape) return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features) def _merge_heads(self, tensor, num_heads, attn_head_size): """ Merges attn_head_size dim and num_attn_heads dim into hidden_size """ tensor = tensor.permute(0, 2, 1, 3).contiguous() new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,) return tensor.view(new_shape) def _attn(self, query, key, value, attention_mask=None, head_mask=None): # Keep the attention weights computation in fp32 to avoid overflow issues query = query.to(torch.float32) key = key.to(torch.float32) attn_weights = torch.matmul(query, key.transpose(-1, -2)) if not self.is_cross_attention: query_length, key_length = query.size(-2), key.size(-2) causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].to(torch.bool) mask_value = torch.finfo(attn_weights.dtype).min # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`. # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device) attn_weights = torch.where(causal_mask, attn_weights, mask_value) if attention_mask is not None: # Apply the attention mask attn_weights = attn_weights + attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1) attn_weights = attn_weights.to(value.dtype) attn_weights = self.attn_dropout(attn_weights) # Mask heads if we want to if head_mask is not None: attn_weights = attn_weights * head_mask attn_output = torch.matmul(attn_weights, value) return attn_output, attn_weights def forward( self, hidden_states: Optional[Tuple[torch.FloatTensor]], layer_past: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]: if encoder_hidden_states is not None: key = self.k_proj(encoder_hidden_states) value = self.v_proj(encoder_hidden_states) attention_mask = encoder_attention_mask else: key = self.k_proj(hidden_states) value = self.v_proj(hidden_states) query = self.q_proj(hidden_states) query = self._split_heads(query, self.num_heads, self.head_dim) key = self._split_heads(key, self.num_heads, self.head_dim) value = self._split_heads(value, self.num_heads, self.head_dim) if layer_past is not None: past_key = layer_past[0] past_value = layer_past[1] key = torch.cat((past_key, key), dim=-2) value = torch.cat((past_value, value), dim=-2) if use_cache is True: present = (key, value) else: present = None attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim) attn_output = self.out_proj(attn_output) attn_output = self.resid_dropout(attn_output) outputs = (attn_output, present) if output_attentions: outputs += (attn_weights,) return outputs # a, present, (attentions) class GPTNeoAttention(nn.Module): def __init__(self, config, layer_id=0, is_cross_attention=False): super().__init__() self.layer_id = layer_id self.attention_layers = config.attention_layers self.attention_type = self.attention_layers[layer_id] if self.attention_type in ["global", "local"]: self.attention = GPTNeoSelfAttention(config, self.attention_type, is_cross_attention=is_cross_attention) else: raise NotImplementedError( "Only attn layer types 'global' and 'local' exist, but got `config.attention_layers`: " f"{config.attention_layers}. Select attn layer types from ['global', 'local'] only." ) def forward( self, hidden_states: Optional[Tuple[torch.FloatTensor]], layer_past: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]: return self.attention( hidden_states, attention_mask=attention_mask, layer_past=layer_past, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=use_cache, output_attentions=output_attentions, ) class GPTNeoMLP(nn.Module): def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * hidden_size super().__init__() embed_dim = config.hidden_size self.c_fc = nn.Linear(embed_dim, intermediate_size) self.c_proj = nn.Linear(intermediate_size, embed_dim) self.act = ACT2FN[config.activation_function] self.dropout = nn.Dropout(float(config.resid_dropout)) def forward(self, hidden_states): hidden_states = self.c_fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.c_proj(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class GPTNeoBlock(nn.Module): def __init__(self, config, layer_id): super().__init__() hidden_size = config.hidden_size inner_dim = config.intermediate_size if config.intermediate_size is not None else 4 * hidden_size self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.attn = GPTNeoAttention(config, layer_id, is_cross_attention=False) self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.mlp = GPTNeoMLP(inner_dim, config) def forward( self, hidden_states: Optional[Tuple[torch.FloatTensor]], layer_past: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: residual = hidden_states hidden_states = self.ln_1(hidden_states) attn_outputs = self.attn( hidden_states, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attn_output = attn_outputs[0] # output_attn: a, present, (attentions) outputs = attn_outputs[1:] # residual connection hidden_states = attn_output + residual residual = hidden_states hidden_states = self.ln_2(hidden_states) feed_forward_hidden_states = self.mlp(hidden_states) # residual connection hidden_states = residual + feed_forward_hidden_states if use_cache: outputs = (hidden_states,) + outputs else: outputs = (hidden_states,) + outputs[1:] return outputs # hidden_states, present, (attentions, cross_attentions) class VGPTNeoGatedCrossAttentionBlock(nn.Module): def __init__(self, config, layer_id): super().__init__() hidden_size = config.hidden_size inner_dim = config.intermediate_size if config.intermediate_size is not None else 4 * hidden_size self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.cross_attn = GPTNeoAttention(config, layer_id, is_cross_attention=True) self.mlp = GPTNeoMLP(inner_dim, config) self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.act = nn.Tanh() if config.alpha_initializer == "zeros": if config.alpha_type == "vector": self.alpha_cross_attn = nn.Parameter(torch.zeros(1, 1, hidden_size)) self.alpha_dense = nn.Parameter(torch.zeros(1, 1, hidden_size)) elif config.alpha_type == "float": self.alpha_cross_attn = nn.Parameter(torch.zeros(1)) self.alpha_dense = nn.Parameter(torch.zeros(1)) else: raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") elif config.alpha_initializer == "ones": if config.alpha_type == "vector": self.alpha_cross_attn = nn.Parameter(torch.ones(1, 1, hidden_size)) self.alpha_dense = nn.Parameter(torch.ones(1, 1, hidden_size)) elif config.alpha_type == "float": self.alpha_cross_attn = nn.Parameter(torch.ones(1)) self.alpha_dense = nn.Parameter(torch.ones(1)) else: raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") elif config.alpha_initializer in {"normal", "gaussian", "random"}: if config.alpha_type == "vector": self.alpha_cross_attn = nn.Parameter( torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1, 1, hidden_size)) ) self.alpha_dense = nn.Parameter( torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1, 1, hidden_size)) ) elif config.alpha_type == "float": self.alpha_cross_attn = nn.Parameter( torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1)) ) self.alpha_dense = nn.Parameter(torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1))) else: raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") else: raise NotImplementedError(f"Alpha initialization scheme {config.alpha_initializer} not yet implemented!") def forward( self, hidden_states: Optional[Tuple[torch.FloatTensor]], layer_past: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, image_hidden_states: Optional[torch.Tensor] = None, image_attention_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: if image_hidden_states is None: raise ValueError( "`image_hidden_states` is required for VGPT2 cross attention module which are visual features to be" " conditioned on." ) # add one self-attention block for cross-attention # TODO(aps): Handle cross attention in the outputs # if not hasattr(self, "crossattention"): # raise ValueError( # f"If `image_hidden_states` are passed, {self} has to be instantiated with " # "cross-attention layers by setting `config.add_cross_attention=True`" # ) residual = hidden_states hidden_states = self.ln_1(hidden_states) cross_attn_outputs = self.cross_attn( hidden_states, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=image_hidden_states, encoder_attention_mask=image_attention_mask, output_attentions=output_attentions, ) attn_output = cross_attn_outputs[0] outputs = cross_attn_outputs[1:] # residual connection hidden_states = residual + self.act(self.alpha_cross_attn) * attn_output outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights residual = hidden_states hidden_states = self.ln_2(hidden_states) feed_forward_hidden_states = self.mlp(hidden_states) # residual connection hidden_states = residual + self.act(self.alpha_dense) * feed_forward_hidden_states if use_cache: outputs = (hidden_states,) + outputs else: outputs = (hidden_states,) + outputs[1:] return outputs class VGPTNeoPreTrainedModel(VLOOMPreTrainedModelBase): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = VGPTNeoConfig load_tf_weights = load_tf_weights_in_gpt_neo base_model_prefix = "transformer" supports_gradient_checkpointing = True _no_split_modules = ["GPTNeoBlock"] def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, (nn.Linear,)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, VGPTNeoModel): module.gradient_checkpointing = value @classmethod def override_vision_model_wrapper(cls, model, config, vision_model_name, vision_model_params, torch_dtype): # this can be called via from_pretrained from a class w/ head or w/o head so we extract the beheaded model version beheaded_model = model.transformer if hasattr(model, "transformer") else model cls.override_vision_model(beheaded_model, vision_model_name, vision_model_params, torch_dtype) beheaded_model.freeze_relevant_params(config) GPT_NEO_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`GPTNeoConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ GPT_NEO_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as `input_ids`. Indices can be obtained using [`GPTNeoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.num_layers`): Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have their past given to this model should not be passed as `input_ids` as they have already been computed. attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see `past_key_values`). use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare GPT Neo Model transformer outputting raw hidden-states without any specific head on top.", GPT_NEO_START_DOCSTRING, ) class VGPTNeoModel(VGPTNeoPreTrainedModel): def __init__(self, config, vision_model=None): super().__init__(config) self.embed_dim = config.hidden_size self.wte = DecoupledEmbedding( num_embeddings=config.vocab_size, num_additional_embeddings=config.additional_vocab_size, embedding_dim=self.embed_dim, partially_freeze=config.freeze_text_layers, ) self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim) self.drop = nn.Dropout(float(config.embed_dropout)) self.h = nn.ModuleList([GPTNeoBlock(config, layer_id=i) for i in range(config.num_layers)]) self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) self.cross_layer_interval = config.cross_layer_interval num_cross_layers = config.num_layers // self.cross_layer_interval self.gated_cross_attn_layers = nn.ModuleList( [VGPTNeoGatedCrossAttentionBlock(config, layer_id=i) for i in range(num_cross_layers)] ) # Perceiver Resampler if config.use_resampler: self.perceiver_resampler = PerceiverResampler( self.config, self.config.vision_embed_dim, config.resampler_depth, config.resampler_n_heads, config.resampler_head_dim, config.resampler_n_latents, ) self.gradient_checkpointing = False self.image_token_idx = config.image_token_index # Load an uninitialized model and later in from_pretrained will load the pre-trained model - # this solves the losing of weights in `from_pretrained` on the main model self.vision_model = vision_model # Initialize weights and apply final processing self.post_init() self.freeze_relevant_params(config) def freeze_relevant_params(self, config=None): if config is None: config = self.config if config.freeze_text_layers: self.freeze_text_layers() if config.freeze_vision_layers: freeze_model(self.vision_model) def freeze_text_layers(self): for module in [self.wpe, self.h, self.ln_f]: freeze_model(module) def get_input_embeddings(self): return self.wte def set_input_embeddings(self, new_embeddings): self.wte = new_embeddings @add_start_docstrings_to_model_forward(GPT_NEO_INPUTS_DOCSTRING) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, image_embeddings: Optional[torch.FloatTensor] = None, image_attention_mask: Optional[torch.Tensor] = None, crossblock_head_mask: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) batch_size = input_ids.shape[0] elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size = inputs_embeds.shape[0] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, input_shape[-1]) if position_ids is not None: position_ids = position_ids.view(-1, input_shape[-1]) if past_key_values is None: past_length = 0 past_key_values = tuple([None] * len(self.h)) else: past_length = past_key_values[0][0].size(-2) if position_ids is None: position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) # GPT2Attention mask. if attention_mask is not None: if batch_size <= 0: raise ValueError("batch_size has to be defined and > 0") attention_mask = attention_mask.view(batch_size, -1) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask = attention_mask[:, None, None, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and the dtype's smallest value for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if pixel_values is not None and image_embeddings is not None: raise ValueError("You cannot specify both pixel_values and image_embeddings at the same time") elif pixel_values is not None: pixel_values = pixel_values.to(dtype=self.dtype, device=input_ids.device) # fp16 compatibility batch_size, num_images = pixel_values.size(0), pixel_values.size(1) pixel_values = pixel_values.contiguous().view(batch_size * num_images, *pixel_values.shape[2:]) # Get sequence from the vision encoder image_hidden_states = self.vision_model(pixel_values=pixel_values).last_hidden_state elif image_embeddings is not None: batch_size, num_images, image_seq_len, image_hidden_size = image_embeddings.size() image_hidden_states = image_embeddings.to(dtype=self.dtype, device=input_ids.device) image_hidden_states = image_hidden_states.view(batch_size * num_images, image_seq_len, image_hidden_size) if self.config.use_resampler: image_hidden_states = self.perceiver_resampler(image_hidden_states) image_seq_len, image_hidden_size = image_hidden_states.size(1), image_hidden_states.size(2) image_hidden_states = image_hidden_states.view(batch_size, num_images * image_seq_len, image_hidden_size) # Make image_attention_mask compatible with hidden states text_seq_len = image_attention_mask.size(1) image_attention_mask = image_attention_mask.unsqueeze(-1) image_attention_mask = image_attention_mask.repeat(1, 1, 1, image_seq_len) image_attention_mask = image_attention_mask.view(batch_size, text_seq_len, num_images * image_seq_len) if image_hidden_states is not None: image_batch_size, image_sequence_length, _ = image_hidden_states.size() image_hidden_shape = (image_batch_size, image_sequence_length) if image_attention_mask is None: image_attention_mask = torch.ones(image_hidden_shape, device=device) # image_attention_mask = self.invert_attention_mask(image_attention_mask) image_attention_mask = image_attention_mask.to(torch.bool) image_attention_mask = image_attention_mask[:, None, :, :] else: image_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # head_mask has shape n_layer x batch x n_heads x N x N head_mask = self.get_head_mask(head_mask, self.config.num_layers) if inputs_embeds is None: inputs_embeds = self.wte(input_ids) position_embeds = self.wpe(position_ids) hidden_states = inputs_embeds + position_embeds if token_type_ids is not None: token_type_embeds = self.wte(token_type_ids) hidden_states = hidden_states + token_type_embeds hidden_states = self.drop(hidden_states) output_shape = input_shape + (hidden_states.size(-1),) presents = () if use_cache else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None all_hidden_states = () if output_hidden_states else None for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) def vblock( main_block, hidden_states, layer_past, attention_mask, layer_head_mask, use_cache, output_attentions, image_hidden_states, image_attention_mask, layer_idx, cross_layer_interval, gated_cross_attn_layers, ): # TODO(aps): Add cross attention values to respective lists # TODO(aps): Add xblock head mask support if layer_idx % cross_layer_interval == 0: xblock = gated_cross_attn_layers[layer_idx // cross_layer_interval] outputs = xblock( hidden_states, attention_mask=attention_mask, image_hidden_states=image_hidden_states, image_attention_mask=image_attention_mask, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = outputs[0] outputs = main_block( hidden_states, layer_past=layer_past, attention_mask=attention_mask, head_mask=layer_head_mask, use_cache=use_cache, output_attentions=output_attentions, ) return outputs if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False outputs = torch.utils.checkpoint.checkpoint( vblock, block, hidden_states, layer_past, attention_mask, head_mask[i], use_cache, output_attentions, image_hidden_states, image_attention_mask, i, self.cross_layer_interval, self.gated_cross_attn_layers, ) else: outputs = vblock( block, hidden_states, layer_past=layer_past, attention_mask=attention_mask, layer_head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, layer_idx=i, image_hidden_states=image_hidden_states, image_attention_mask=image_attention_mask, cross_layer_interval=self.cross_layer_interval, gated_cross_attn_layers=self.gated_cross_attn_layers, ) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],) hidden_states = self.ln_f(hidden_states) hidden_states = hidden_states.view(output_shape) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) @add_start_docstrings( """ The GPT Neo Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, GPT_NEO_START_DOCSTRING, ) class VGPTNeoForCausalLM(VGPTNeoPreTrainedModel): _keys_to_ignore_on_load_missing = [ r"h\.\d+\.attn\.masked_bias", r"lm_head.weight", r"h\.\d+\.attn\.attention\.bias", ] _keys_to_ignore_on_save = [r"lm_head.weight"] def __init__(self, config, vision_model=None): super().__init__(config) self.transformer = VGPTNeoModel(config, vision_model=vision_model) self.lm_head = DecoupledLinear( in_features=config.hidden_size, out_features=config.vocab_size, out_additional_features=config.additional_vocab_size, bias=False, partially_freeze=config.freeze_lm_head, ) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def tie_weights(self): """ Overwrite `transformers.modeling_utils.PreTrainedModel.tie_weights` to handle the case of DecoupledLinear and DecoupledEmbedding. """ output_embeddings = self.get_output_embeddings() input_embeddings = self.get_input_embeddings() if getattr(self.config, "tie_word_embeddings", True): output_embeddings.weight = input_embeddings.weight if input_embeddings.num_additional_embeddings > 0: assert output_embeddings.out_additional_features == input_embeddings.num_additional_embeddings output_embeddings.additional_fc.weight = input_embeddings.additional_embedding.weight if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"): output_embeddings.out_features = input_embeddings.num_embeddings if hasattr(output_embeddings, "out_additional_features") and hasattr( input_embeddings, "num_additional_embeddings" ): output_embeddings.out_additional_features = input_embeddings.num_additional_embeddings def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs): return prepare_inputs_for_generation(input_ids, past=past, **kwargs) @staticmethod def _expand_inputs_for_generation( *args, **model_kwargs, ): return expand_inputs_for_generation(*args, **model_kwargs) @staticmethod def _update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder=False): return update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder=is_encoder_decoder) @add_start_docstrings_to_model_forward(GPT_NEO_INPUTS_DOCSTRING) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[torch.FloatTensor]] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, pixel_values: Optional[torch.FloatTensor] = None, image_embeddings: Optional[torch.FloatTensor] = None, image_attention_mask: Optional[torch.Tensor] = None, crossblock_head_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, pixel_values=pixel_values, image_embeddings=image_embeddings, image_attention_mask=image_attention_mask, crossblock_head_mask=crossblock_head_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) loss = None if labels is not None: # Compute loss in fp32 to match with mesh-tf version # https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179 lm_logits = lm_logits.to(torch.float32) # Shift so that tokens < n predict n if attention_mask is not None: shift_attention_mask = attention_mask[..., 1:] shift_logits = lm_logits[..., :-1, :][shift_attention_mask != 0].contiguous() shift_labels = labels[..., 1:][shift_attention_mask != 0].contiguous() else: shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) lm_logits = lm_logits.to(hidden_states.dtype) loss = loss.to(hidden_states.dtype) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, cross_attentions=transformer_outputs.cross_attentions, ) @staticmethod def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]: """ This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or [`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct beam_idx at every generation step. """ return tuple( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) for layer_past in past ) def get_model_tflops_per_batch_per_gpu(self, hparams, data_param, tokenizer, max_num_images): config_vl_model = self.config language_embed_size = config_vl_model.hidden_size vision_config = self.transformer.vision_model.config num_language_layers = config_vl_model.num_layers ffn_inner_size = ( config_vl_model.intermediate_size if config_vl_model.intermediate_size is not None else 4 * config_vl_model.hidden_size ) # Get vision model blocks infos vision_patch_size = vision_config.patch_size vision_hidden_size = vision_config.hidden_size num_vision_layers = vision_config.num_hidden_layers # The +1 is for the CLS token single_image_seq_len = (vision_config.image_size // vision_patch_size) ** 2 + 1 vision_exp_factor = vision_config.intermediate_size // vision_hidden_size # Get language and cross-att blocks infos num_cross_attn_layers = num_language_layers // config_vl_model.cross_layer_interval language_seq_len = data_param.max_seq_len language_exp_factor = (ffn_inner_size // language_embed_size) if ffn_inner_size is not None else 4 cross_att_exp_factor = (ffn_inner_size // language_embed_size) if ffn_inner_size is not None else 4 k_v_cross_attn_seq_len = ( (self.config.resampler_n_latents * max_num_images) if self.config.use_resampler else (single_image_seq_len * max_num_images) ) language_tflops_per_batch_per_gpu = compute_tflops_per_batch_per_gpu( num_layers=num_language_layers, batch_size=hparams.batch_size_per_gpu, q_seq_len=language_seq_len, k_seq_len=language_seq_len, hidden_size=language_embed_size, kv_in_dim=language_embed_size, ff_exp_factor=language_exp_factor, grad_acc_size=hparams.grad_acc_size, swiglu=False, vocab_size=tokenizer.vocab_size, count_backward=True, # Always True regardless of freezing, because gradients are computed for cross-attentions use_grad_checkpointing=hparams.gradient_checkpointing, ) cross_attention_tflops_per_batch_per_gpu = compute_tflops_per_batch_per_gpu( num_layers=num_cross_attn_layers, batch_size=hparams.batch_size_per_gpu, q_seq_len=language_seq_len, k_seq_len=k_v_cross_attn_seq_len, hidden_size=language_embed_size, kv_in_dim=vision_hidden_size, ff_exp_factor=cross_att_exp_factor, grad_acc_size=hparams.grad_acc_size, swiglu=False, vocab_size=None, count_backward=True, use_grad_checkpointing=hparams.gradient_checkpointing, ) vision_tflops_per_batch_per_gpu = compute_tflops_per_batch_per_gpu( num_layers=num_vision_layers, batch_size=hparams.batch_size_per_gpu * max_num_images, q_seq_len=single_image_seq_len, k_seq_len=single_image_seq_len, hidden_size=vision_hidden_size, kv_in_dim=vision_hidden_size, ff_exp_factor=vision_exp_factor, grad_acc_size=hparams.grad_acc_size, swiglu=False, vocab_size=None, count_backward=not hparams.model_params["freeze_vision_layers"], use_grad_checkpointing=hparams.gradient_checkpointing, ) if self.config.use_resampler: perceiver_tflops_per_batch_per_gpu = compute_perceiver_tflops_per_batch_per_gpu( num_layers=self.config.resampler_depth, batch_size=hparams.batch_size_per_gpu * max_num_images, q_seq_len=self.config.resampler_n_latents, vision_embed_seq_len=single_image_seq_len, q_k_v_input_dim=vision_hidden_size, attention_hidden_size=self.config.resampler_n_heads * self.config.resampler_head_dim, ff_exp_factor=cross_att_exp_factor, count_backward=True, use_grad_checkpointing=hparams.gradient_checkpointing, ) flop_count = ( language_tflops_per_batch_per_gpu + cross_attention_tflops_per_batch_per_gpu + vision_tflops_per_batch_per_gpu + perceiver_tflops_per_batch_per_gpu ) else: flop_count = ( language_tflops_per_batch_per_gpu + cross_attention_tflops_per_batch_per_gpu + vision_tflops_per_batch_per_gpu ) return flop_count