diff --git "a/m4/models/vt5/modeling_vt5.py" "b/m4/models/vt5/modeling_vt5.py" deleted file mode 100644--- "a/m4/models/vt5/modeling_vt5.py" +++ /dev/null @@ -1,2188 +0,0 @@ -# coding=utf-8 -# Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" PyTorch T5 model.""" - - -import copy -import math -import os -import warnings -from typing import Optional, Tuple, Union - -import torch -from torch import nn -from torch.nn import CrossEntropyLoss -from torch.utils.checkpoint import checkpoint -from transformers.activations import ACT2FN -from transformers.modeling_outputs import ( - BaseModelOutput, - BaseModelOutputWithPastAndCrossAttentions, - Seq2SeqLMOutput, - Seq2SeqModelOutput, -) -from transformers.models.t5.configuration_t5 import T5Config -from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer -from transformers.utils import ( - DUMMY_INPUTS, - DUMMY_MASK, - add_start_docstrings, - add_start_docstrings_to_model_forward, - is_torch_fx_proxy, - replace_return_docstrings, -) -from transformers.utils.model_parallel_utils import assert_device_map, get_device_map - -from m4.models import DecoupledEmbedding, DecoupledLinear -from m4.models.custom_modules import VLOOMPreTrainedModelBase -from m4.models.vt5.configuration_vt5 import VT5Config -from m4.training.packing import random_spans_helper -from m4.training.utils import compute_tflops_per_batch_per_gpu, freeze_model -from m4.utils import logging - - -ALL_LAYERNORM_LAYERS = [nn.LayerNorm] - -logger = logging.get_logger(__name__) - -_CONFIG_FOR_DOC = "T5Config" -_TOKENIZER_FOR_DOC = "T5Tokenizer" -_CHECKPOINT_FOR_DOC = "t5-small" - -#################################################### -# This dict contains ids and associated url -# for the pretrained weights provided with the models -#################################################### -T5_PRETRAINED_MODEL_ARCHIVE_LIST = [ - "t5-small", - "t5-base", - "t5-large", - "t5-3b", - "t5-11b", - # See all T5 models at https://huggingface.co/models?filter=t5 -] - - -#################################################### -# This is a conversion method from TF 1.0 to PyTorch -# More details: https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28 -#################################################### -def load_tf_weights_in_t5(model, config, tf_checkpoint_path): - """Load tf checkpoints in a pytorch model.""" - try: - import re - - import numpy as np - import tensorflow as tf - except ImportError: - logger.error( - "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " - "https://www.tensorflow.org/install/ for installation instructions." - ) - raise - tf_path = os.path.abspath(tf_checkpoint_path) - logger.info(f"Converting TensorFlow checkpoint from {tf_path}") - # Load weights from TF model - init_vars = tf.train.list_variables(tf_path) - names = [] - tf_weights = {} - for name, shape in init_vars: - logger.info(f"Loading TF weight {name} with shape {shape}") - array = tf.train.load_variable(tf_path, name) - names.append(name) - tf_weights[name] = array - - for txt_name in names: - name = txt_name.split("/") - # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v - # which are not required for using pretrained model - if any( - n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] - for n in name - ): - logger.info(f"Skipping {'/'.join(name)}") - tf_weights.pop(txt_name, None) - continue - if "_slot_" in name[-1]: - logger.info(f"Skipping {'/'.join(name)}") - tf_weights.pop(txt_name, None) - continue - pointer = model - array = tf_weights[txt_name] - - for m_name in name: - if re.fullmatch(r"[A-Za-z]+_\d+", m_name): - scope_names = re.split(r"_(\d+)", m_name) - else: - scope_names = [m_name] - if scope_names[0] in ["kernel", "scale", "embedding"]: - pointer = getattr(pointer, "weight") - elif scope_names[0] == "self_attention": - pointer = getattr(pointer, "layer") - pointer = pointer[0] - elif scope_names[0] == "enc_dec_attention": - pointer = getattr(pointer, "layer") - pointer = pointer[1] - elif scope_names[0] == "dense_relu_dense": - pointer = getattr(pointer, "layer") - pointer = pointer[2] - elif scope_names[0] == "rms_norm": - if hasattr(pointer, "layer_norm"): - pointer = getattr(pointer, "layer_norm") - elif hasattr(pointer, "final_layer_norm"): - pointer = getattr(pointer, "final_layer_norm") - elif scope_names[0] == "scale": - pointer = getattr(pointer, "weight") - elif scope_names[0] == "output_bias" or scope_names[0] == "beta": - pointer = getattr(pointer, "bias") - elif scope_names[0] == "squad": - pointer = getattr(pointer, "classifier") - elif scope_names[0] == "decoder" and name[1] == "logits": - continue - elif scope_names[0] == "logits": - pointer = getattr(pointer, "lm_head") - elif scope_names[0] == "wi" and len(scope_names) > 1 and scope_names[1].isdigit(): - pointer = getattr(pointer, f"wi_{scope_names[1]}") - continue - else: - try: - pointer = getattr(pointer, scope_names[0]) - except AttributeError: - logger.info(f"Skipping {'/'.join(name)}") - continue - if len(scope_names) >= 2: - num = int(scope_names[1]) - pointer = pointer[num] - if scope_names[0] not in ["kernel", "scale", "embedding"]: - pointer = getattr(pointer, "weight") - if scope_names[0] != "embedding": - logger.info(f"Transposing numpy weight of shape {array.shape} for {name}") - array = np.transpose(array) - try: - assert ( - pointer.shape == array.shape - ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" - except AssertionError as e: - e.args += (pointer.shape, array.shape) - raise - logger.info(f"Initialize PyTorch weight {name}") - pointer.data = torch.from_numpy(array.astype(np.float32)) - tf_weights.pop(txt_name, None) - - logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.") - return model - - -#################################################### -# PyTorch Models are constructed by sub-classing -# - torch.nn.Module for the layers and -# - PreTrainedModel for the models (it-self a sub-class of nn.Module) -#################################################### -PARALLELIZE_DOCSTRING = r""" - This is an experimental feature and is a subject to change at a moment's notice. - - Uses a device map to distribute attention modules of the model across several devices. If no device map is given, - it will evenly distribute blocks across all devices. - - Args: - device_map (`Dict[int, list]`, optional, defaults to None): - A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always - automatically mapped to the first device (for esoteric reasons). That means that the first device should - have fewer attention modules mapped to it than other devices. For reference, the t5 models have the - following number of attention modules: - - - t5-small: 6 - - t5-base: 12 - - t5-large: 24 - - t5-3b: 24 - - t5-11b: 24 - - Example: - - ```python - # Here is an example of a device map on a machine with 4 GPUs using t5-3b, which has a total of 24 attention modules: - model = T5ForConditionalGeneration.from_pretrained("t5-3b") - device_map = { - 0: [0, 1, 2], - 1: [3, 4, 5, 6, 7, 8, 9], - 2: [10, 11, 12, 13, 14, 15, 16], - 3: [17, 18, 19, 20, 21, 22, 23], - } - model.parallelize(device_map) - ``` -""" -DEPARALLELIZE_DOCSTRING = r""" - Moves the model to cpu from a model parallel state. - - Example: - - ```python - # On a 4 GPU machine with t5-3b: - model = T5ForConditionalGeneration.from_pretrained("t5-3b") - device_map = { - 0: [0, 1, 2], - 1: [3, 4, 5, 6, 7, 8, 9], - 2: [10, 11, 12, 13, 14, 15, 16], - 3: [17, 18, 19, 20, 21, 22, 23], - } - model.parallelize(device_map) # Splits the model across several devices - model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache() - ``` -""" - - -class T5LayerNorm(nn.Module): - def __init__(self, hidden_size, eps=1e-6): - """ - Construct a layernorm module in the T5 style. No bias and no subtraction of mean. - """ - super().__init__() - self.weight = nn.Parameter(torch.ones(hidden_size)) - self.variance_epsilon = eps - - def forward(self, hidden_states): - # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean - # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated - # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for - # half-precision inputs is done in fp32 - - variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) - hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) - - # convert into half-precision if necessary - if self.weight.dtype in [torch.float16, torch.bfloat16]: - hidden_states = hidden_states.to(self.weight.dtype) - - return self.weight * hidden_states - - -try: - from apex.normalization import FusedRMSNorm - - T5LayerNorm = FusedRMSNorm # noqa - - logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of T5LayerNorm") -except ImportError: - # using the normal T5LayerNorm - pass -except Exception: - logger.warning("discovered apex but it failed to load, falling back to T5LayerNorm") - pass - -ALL_LAYERNORM_LAYERS = [nn.LayerNorm, T5LayerNorm] - - -class T5DenseActDense(nn.Module): - def __init__(self, config: T5Config): - super().__init__() - self.wi = nn.Linear(config.d_model, config.d_ff, bias=False) - self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) - self.dropout = nn.Dropout(config.dropout_rate) - self.act = ACT2FN[config.dense_act_fn] - - def forward(self, hidden_states): - hidden_states = self.wi(hidden_states) - hidden_states = self.act(hidden_states) - hidden_states = self.dropout(hidden_states) - hidden_states = self.wo(hidden_states) - return hidden_states - - -class T5DenseGatedActDense(nn.Module): - def __init__(self, config: T5Config): - super().__init__() - self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False) - self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False) - self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) - self.dropout = nn.Dropout(config.dropout_rate) - self.act = ACT2FN[config.dense_act_fn] - - def forward(self, hidden_states): - hidden_gelu = self.act(self.wi_0(hidden_states)) - hidden_linear = self.wi_1(hidden_states) - hidden_states = hidden_gelu * hidden_linear - hidden_states = self.dropout(hidden_states) - hidden_states = self.wo(hidden_states) - return hidden_states - - -class T5LayerFF(nn.Module): - def __init__(self, config: T5Config, is_vision_cross_attention=False): - super().__init__() - if config.is_gated_act: - self.DenseReluDense = T5DenseGatedActDense(config) - else: - self.DenseReluDense = T5DenseActDense(config) - - self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) - self.dropout = nn.Dropout(config.dropout_rate) - - self.is_vision_cross_attention = is_vision_cross_attention - if is_vision_cross_attention: - self.act = nn.Tanh() - if config.alpha_initializer == "zeros": - if config.alpha_type == "vector": - self.alpha_dense = nn.Parameter(torch.zeros(1, 1, config.d_model)) - elif config.alpha_type == "float": - self.alpha_dense = nn.Parameter(torch.zeros(1)) - else: - raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") - - elif config.alpha_initializer == "ones": - if config.alpha_type == "vector": - self.alpha_dense = nn.Parameter(torch.ones(1, 1, config.d_model)) - elif config.alpha_type == "float": - self.alpha_dense = nn.Parameter(torch.ones(1)) - else: - raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") - - elif config.alpha_initializer in {"normal", "gaussian", "random"}: - if config.alpha_type == "vector": - self.alpha_dense = nn.Parameter( - torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1, 1, config.d_model)) - ) - elif config.alpha_type == "float": - self.alpha_dense = nn.Parameter( - torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1)) - ) - else: - raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") - - else: - raise NotImplementedError( - f"Alpha initialization scheme {config.alpha_initializer} not yet implemented!" - ) - - def forward(self, hidden_states): - forwarded_states = self.layer_norm(hidden_states) - forwarded_states = self.DenseReluDense(forwarded_states) - if not self.is_vision_cross_attention: - hidden_states = hidden_states + self.dropout(forwarded_states) - else: - hidden_states = hidden_states + self.dropout(self.act(self.alpha_dense) * forwarded_states) - return hidden_states - - -class T5Attention(nn.Module): - def __init__(self, config: T5Config, has_relative_attention_bias=False, is_vision_cross_attention=False): - super().__init__() - self.is_decoder = config.is_decoder - self.has_relative_attention_bias = has_relative_attention_bias - self.relative_attention_num_buckets = config.relative_attention_num_buckets - self.relative_attention_max_distance = config.relative_attention_max_distance - self.d_model = config.d_model - self.key_value_proj_dim = config.d_kv - self.n_heads = config.num_heads - self.dropout = config.dropout_rate - self.inner_dim = self.n_heads * self.key_value_proj_dim - - # Mesh TensorFlow initialization to avoid scaling before softmax - self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) - if not is_vision_cross_attention: - self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) - self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) - else: - vision_embed_dim = self.embed_dim if not hasattr(config, "vision_embed_dim") else config.vision_embed_dim - self.k = nn.Linear(vision_embed_dim, self.inner_dim, bias=False) - self.v = nn.Linear(vision_embed_dim, self.inner_dim, bias=False) - self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) - - if self.has_relative_attention_bias: - self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) - self.pruned_heads = set() - self.gradient_checkpointing = False - - def prune_heads(self, heads): - if len(heads) == 0: - return - heads, index = find_pruneable_heads_and_indices( - heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads - ) - # Prune linear layers - self.q = prune_linear_layer(self.q, index) - self.k = prune_linear_layer(self.k, index) - self.v = prune_linear_layer(self.v, index) - self.o = prune_linear_layer(self.o, index, dim=1) - # Update hyper params - self.n_heads = self.n_heads - len(heads) - self.inner_dim = self.key_value_proj_dim * self.n_heads - self.pruned_heads = self.pruned_heads.union(heads) - - @staticmethod - def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): - """ - Adapted from Mesh Tensorflow: - https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 - - Translate relative position to a bucket number for relative attention. The relative position is defined as - memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to - position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for - small absolute relative_position and larger buckets for larger absolute relative_positions. All relative - positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. - This should allow for more graceful generalization to longer sequences than the model has been trained on - - Args: - relative_position: an int32 Tensor - bidirectional: a boolean - whether the attention is bidirectional - num_buckets: an integer - max_distance: an integer - - Returns: - a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) - """ - relative_buckets = 0 - if bidirectional: - num_buckets //= 2 - relative_buckets += (relative_position > 0).to(torch.long) * num_buckets - relative_position = torch.abs(relative_position) - else: - relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) - # now relative_position is in the range [0, inf) - - # half of the buckets are for exact increments in positions - max_exact = num_buckets // 2 - is_small = relative_position < max_exact - - # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance - relative_position_if_large = max_exact + ( - torch.log(relative_position.float() / max_exact) - / math.log(max_distance / max_exact) - * (num_buckets - max_exact) - ).to(torch.long) - relative_position_if_large = torch.min( - relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) - ) - - relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) - return relative_buckets - - def compute_bias(self, query_length, key_length, device=None): - """Compute binned relative position bias""" - if device is None: - device = self.relative_attention_bias.weight.device - context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] - memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] - relative_position = memory_position - context_position # shape (query_length, key_length) - relative_position_bucket = self._relative_position_bucket( - relative_position, # shape (query_length, key_length) - bidirectional=(not self.is_decoder), - num_buckets=self.relative_attention_num_buckets, - max_distance=self.relative_attention_max_distance, - ) - values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads) - values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) - return values - - def forward( - self, - hidden_states, - mask=None, - key_value_states=None, - position_bias=None, - past_key_value=None, - layer_head_mask=None, - query_length=None, - use_cache=False, - output_attentions=False, - ): - """ - Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). - """ - # Input is (batch_size, seq_length, dim) - # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) - # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) - batch_size, seq_length = hidden_states.shape[:2] - - real_seq_length = seq_length - - if past_key_value is not None: - assert ( - len(past_key_value) == 2 - ), f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" - real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length - - key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] - - def shape(states): - """projection""" - return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) - - def unshape(states): - """reshape""" - return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) - - def project(hidden_states, proj_layer, key_value_states, past_key_value): - """projects hidden states correctly to key/query states""" - if key_value_states is None: - # self-attn - # (batch_size, n_heads, seq_length, dim_per_head) - hidden_states = shape(proj_layer(hidden_states)) - elif past_key_value is None: - # cross-attn - # (batch_size, n_heads, seq_length, dim_per_head) - hidden_states = shape(proj_layer(key_value_states)) - - if past_key_value is not None: - if key_value_states is None: - # self-attn - # (batch_size, n_heads, key_length, dim_per_head) - hidden_states = torch.cat([past_key_value, hidden_states], dim=2) - else: - # cross-attn - hidden_states = past_key_value - return hidden_states - - # get query states - query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head) - - # get key/value states - key_states = project( - hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None - ) - value_states = project( - hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None - ) - - # compute scores - scores = torch.matmul( - query_states, key_states.transpose(3, 2) - ) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 - - if position_bias is None: - if not self.has_relative_attention_bias: - position_bias = torch.zeros( - (1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype - ) - if self.gradient_checkpointing and self.training: - position_bias.requires_grad = True - else: - position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device) - - # if key and values are already calculated - # we want only the last query position bias - if past_key_value is not None: - position_bias = position_bias[:, :, -hidden_states.size(1) :, :] - - if mask is not None: - position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length) - - if self.pruned_heads: - mask = torch.ones(position_bias.shape[1]) - mask[list(self.pruned_heads)] = 0 - position_bias_masked = position_bias[:, mask.bool()] - else: - position_bias_masked = position_bias - - scores += position_bias_masked - attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as( - scores - ) # (batch_size, n_heads, seq_length, key_length) - attn_weights = nn.functional.dropout( - attn_weights, p=self.dropout, training=self.training - ) # (batch_size, n_heads, seq_length, key_length) - - # Mask heads if we want to - if layer_head_mask is not None: - attn_weights = attn_weights * layer_head_mask - - attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim) - attn_output = self.o(attn_output) - - present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None - outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) - - if output_attentions: - outputs = outputs + (attn_weights,) - return outputs - - -class T5LayerSelfAttention(nn.Module): - def __init__(self, config, has_relative_attention_bias=False): - super().__init__() - self.SelfAttention = T5Attention(config, has_relative_attention_bias=has_relative_attention_bias) - self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) - self.dropout = nn.Dropout(config.dropout_rate) - - def forward( - self, - hidden_states, - attention_mask=None, - position_bias=None, - layer_head_mask=None, - past_key_value=None, - use_cache=False, - output_attentions=False, - ): - normed_hidden_states = self.layer_norm(hidden_states) - attention_output = self.SelfAttention( - normed_hidden_states, - mask=attention_mask, - position_bias=position_bias, - layer_head_mask=layer_head_mask, - past_key_value=past_key_value, - use_cache=use_cache, - output_attentions=output_attentions, - ) - hidden_states = hidden_states + self.dropout(attention_output[0]) - outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them - return outputs - - -class T5LayerCrossAttention(nn.Module): - def __init__(self, config, is_vision_cross_attention=False): - super().__init__() - self.EncDecAttention = T5Attention( - config, has_relative_attention_bias=False, is_vision_cross_attention=is_vision_cross_attention - ) - self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) - self.dropout = nn.Dropout(config.dropout_rate) - - self.is_vision_cross_attention = is_vision_cross_attention - if is_vision_cross_attention: - self.act = nn.Tanh() - if config.alpha_initializer == "zeros": - if config.alpha_type == "vector": - self.alpha_cross_attn = nn.Parameter(torch.zeros(1, 1, config.d_model)) - elif config.alpha_type == "float": - self.alpha_cross_attn = nn.Parameter(torch.zeros(1)) - else: - raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") - - elif config.alpha_initializer == "ones": - if config.alpha_type == "vector": - self.alpha_cross_attn = nn.Parameter(torch.ones(1, 1, config.d_model)) - elif config.alpha_type == "float": - self.alpha_cross_attn = nn.Parameter(torch.ones(1)) - else: - raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") - - elif config.alpha_initializer in {"normal", "gaussian", "random"}: - if config.alpha_type == "vector": - self.alpha_cross_attn = nn.Parameter( - torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1, 1, config.d_model)) - ) - elif config.alpha_type == "float": - self.alpha_cross_attn = nn.Parameter( - torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1)) - ) - else: - raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") - - else: - raise NotImplementedError( - f"Alpha initialization scheme {config.alpha_initializer} not yet implemented!" - ) - - def forward( - self, - hidden_states, - key_value_states, - attention_mask=None, - position_bias=None, - layer_head_mask=None, - past_key_value=None, - use_cache=False, - query_length=None, - output_attentions=False, - ): - normed_hidden_states = self.layer_norm(hidden_states) - attention_output = self.EncDecAttention( - normed_hidden_states, - mask=attention_mask, - key_value_states=key_value_states, - position_bias=position_bias, - layer_head_mask=layer_head_mask, - past_key_value=past_key_value, - use_cache=use_cache, - query_length=query_length, - output_attentions=output_attentions, - ) - if not self.is_vision_cross_attention: - layer_output = hidden_states + self.dropout(attention_output[0]) - else: - layer_output = hidden_states + self.dropout(self.act(self.alpha_cross_attn) * attention_output[0]) - outputs = (layer_output,) + attention_output[1:] # add attentions if we output them - return outputs - - -class T5Block(nn.Module): - def __init__(self, config, has_relative_attention_bias=False): - super().__init__() - self.is_decoder = config.is_decoder - self.layer = nn.ModuleList() - self.layer.append(T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias)) - if self.is_decoder: - self.layer.append(T5LayerCrossAttention(config)) - - self.layer.append(T5LayerFF(config)) - - def forward( - self, - hidden_states, - attention_mask=None, - position_bias=None, - encoder_hidden_states=None, - encoder_attention_mask=None, - encoder_decoder_position_bias=None, - layer_head_mask=None, - cross_attn_layer_head_mask=None, - past_key_value=None, - use_cache=False, - output_attentions=False, - return_dict=True, - ): - if past_key_value is not None: - if not self.is_decoder: - logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.") - expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 - - if len(past_key_value) != expected_num_past_key_values: - raise ValueError( - f"There should be {expected_num_past_key_values} past states. " - f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}" - f"Got {len(past_key_value)} past key / value states" - ) - - self_attn_past_key_value = past_key_value[:2] - cross_attn_past_key_value = past_key_value[2:] - else: - self_attn_past_key_value, cross_attn_past_key_value = None, None - - self_attention_outputs = self.layer[0]( - hidden_states, - attention_mask=attention_mask, - position_bias=position_bias, - layer_head_mask=layer_head_mask, - past_key_value=self_attn_past_key_value, - use_cache=use_cache, - output_attentions=output_attentions, - ) - hidden_states, present_key_value_state = self_attention_outputs[:2] - attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights - - # clamp inf values to enable fp16 training - if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): - clamp_value = torch.finfo(hidden_states.dtype).max - 1000 - hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) - - do_cross_attention = self.is_decoder and encoder_hidden_states is not None - if do_cross_attention: - # the actual query length is unknown for cross attention - # if using past key value states. Need to inject it here - if present_key_value_state is not None: - query_length = present_key_value_state[0].shape[2] - else: - query_length = None - - cross_attention_outputs = self.layer[1]( - hidden_states, - key_value_states=encoder_hidden_states, - attention_mask=encoder_attention_mask, - position_bias=encoder_decoder_position_bias, - layer_head_mask=cross_attn_layer_head_mask, - past_key_value=cross_attn_past_key_value, - query_length=query_length, - use_cache=use_cache, - output_attentions=output_attentions, - ) - hidden_states = cross_attention_outputs[0] - - # clamp inf values to enable fp16 training - if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): - clamp_value = torch.finfo(hidden_states.dtype).max - 1000 - hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) - - # Combine self attn and cross attn key value states - if present_key_value_state is not None: - present_key_value_state = present_key_value_state + cross_attention_outputs[1] - - # Keep cross-attention outputs and relative position weights - attention_outputs = attention_outputs + cross_attention_outputs[2:] - - # Apply Feed Forward layer - hidden_states = self.layer[-1](hidden_states) - - # clamp inf values to enable fp16 training - if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): - clamp_value = torch.finfo(hidden_states.dtype).max - 1000 - hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) - - outputs = (hidden_states,) - - if use_cache: - outputs = outputs + (present_key_value_state,) + attention_outputs - else: - outputs = outputs + attention_outputs - - return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) - - -class VT5GatedCrossAttentionBlock(nn.Module): - """Implementing the gated cross attention from the text LM to the vision encoder output.""" - - def __init__(self, config, has_relative_attention_bias=False): - super().__init__() - self.is_decoder = config.is_decoder - self.layer = nn.ModuleList() - self.layer.append(T5LayerCrossAttention(config, is_vision_cross_attention=True)) - self.layer.append(T5LayerFF(config, is_vision_cross_attention=True)) - - def forward( - self, - hidden_states, - encoder_hidden_states=None, - encoder_attention_mask=None, - encoder_decoder_position_bias=None, - cross_attn_layer_head_mask=None, - use_cache=False, - output_attentions=False, - return_dict=True, - ): - cross_attention_outputs = self.layer[0]( - hidden_states, - key_value_states=encoder_hidden_states, - attention_mask=encoder_attention_mask, - position_bias=encoder_decoder_position_bias, - layer_head_mask=cross_attn_layer_head_mask, - use_cache=use_cache, - output_attentions=output_attentions, - ) - hidden_states, _ = cross_attention_outputs[ - :2 - ] # In the standard case, `_` would be `present_key_value_state`. But in the case of vision cross attention for the lm encoder, `present_key_value_state` is always None. So I am directly simplifying the logic by simply removing it and setting it to None where it should be None. - - # clamp inf values to enable fp16 training - if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): - clamp_value = torch.finfo(hidden_states.dtype).max - 1000 - hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) - - # Apply Feed Forward layer - hidden_states = self.layer[-1](hidden_states) - - # clamp inf values to enable fp16 training - if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): - clamp_value = torch.finfo(hidden_states.dtype).max - 1000 - hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) - - outputs = (hidden_states,) - - if use_cache: - outputs = outputs + (None,) + cross_attention_outputs[2:] - else: - outputs = outputs + cross_attention_outputs[2:] - - return outputs - - -class VT5PreTrainedModel(VLOOMPreTrainedModelBase): - """ - An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained - models. - """ - - config_class = VT5Config - load_tf_weights = load_tf_weights_in_t5 - base_model_prefix = "transformer" - is_parallelizable = True - supports_gradient_checkpointing = True - _no_split_modules = ["T5Block"] - - @property - def dummy_inputs(self): - input_ids = torch.tensor(DUMMY_INPUTS) - input_mask = torch.tensor(DUMMY_MASK) - dummy_inputs = { - "decoder_input_ids": input_ids, - "input_ids": input_ids, - "decoder_attention_mask": input_mask, - } - return dummy_inputs - - def _init_weights(self, module): - """Initialize the weights""" - factor = self.config.initializer_factor # Used for testing weights initialization - if isinstance(module, T5LayerNorm): - module.weight.data.fill_(factor * 1.0) - elif isinstance(module, (VT5Model, VT5ForConditionalGeneration)): - # Mesh TensorFlow embeddings initialization - # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624 - module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0) - if hasattr(module, "lm_head") and not self.config.tie_word_embeddings: - module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0) - elif isinstance(module, T5DenseActDense): - # Mesh TensorFlow FF initialization - # See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56 - # and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89 - module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) - if hasattr(module.wi, "bias") and module.wi.bias is not None: - module.wi.bias.data.zero_() - module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) - if hasattr(module.wo, "bias") and module.wo.bias is not None: - module.wo.bias.data.zero_() - elif isinstance(module, T5DenseGatedActDense): - module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) - if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None: - module.wi_0.bias.data.zero_() - module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) - if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None: - module.wi_1.bias.data.zero_() - module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) - if hasattr(module.wo, "bias") and module.wo.bias is not None: - module.wo.bias.data.zero_() - elif isinstance(module, T5Attention): - # Mesh TensorFlow attention initialization to avoid scaling before softmax - # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 - d_model = self.config.d_model - key_value_proj_dim = self.config.d_kv - n_heads = self.config.num_heads - module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) - module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) - module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) - module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) - if module.has_relative_attention_bias: - module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5)) - - def _set_gradient_checkpointing(self, module, value=False): - if isinstance(module, (T5Attention, VT5Stack)): - module.gradient_checkpointing = value - - @classmethod - def override_vision_model_wrapper(cls, model, config, vision_model_name, vision_model_params, torch_dtype): - # this can be called via from_pretrained from a class w/ head or w/o head so we extract the beheaded model version - beheaded_model = model.encoder - cls.override_vision_model(beheaded_model, vision_model_name, vision_model_params, torch_dtype) - beheaded_model.freeze_relevant_params(config) - - def _shift_right(self, input_ids): - decoder_start_token_id = self.config.decoder_start_token_id - pad_token_id = self.config.pad_token_id - - assert decoder_start_token_id is not None, ( - "self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id." - " See T5 docs for more information" - ) - - # shift inputs to the right - if is_torch_fx_proxy(input_ids): - # Item assignment is not supported natively for proxies. - shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id) - shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) - else: - shifted_input_ids = input_ids.new_zeros(input_ids.shape) - shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() - shifted_input_ids[..., 0] = decoder_start_token_id - - assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined." - # replace possible -100 values in labels by `pad_token_id` - shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) - - return shifted_input_ids - - -class VT5Stack(VT5PreTrainedModel): - def __init__(self, config, embed_tokens=None, vision_model=None): - super().__init__(config) - - self.embed_tokens = embed_tokens - self.is_decoder = config.is_decoder - - self.block = nn.ModuleList( - [T5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)] - ) - self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) - self.dropout = nn.Dropout(config.dropout_rate) - - if not self.is_decoder: - self.cross_layer_interval = config.cross_layer_interval - num_cross_layers = config.num_layers // self.cross_layer_interval - self.gated_cross_attn_layers = nn.ModuleList( - [VT5GatedCrossAttentionBlock(config) for i in range(num_cross_layers)] - ) - - # Model parallel - self.model_parallel = False - self.device_map = None - self.gradient_checkpointing = False - - # Load an uninitialized model and later in from_pretrained will load the pre-trained model - - # this solves the losing of weights in `from_pretrained` on the main model - if not self.is_decoder: - self.vision_model = vision_model - - # Initialize weights and apply final processing - self.post_init() - - self.freeze_relevant_params(config) - - def freeze_relevant_params(self, config=None): - if config is None: - config = self.config - - if config.freeze_text_layers: - self.freeze_text_layers() - - if not self.is_decoder and config.freeze_vision_layers: - freeze_model(self.vision_model) - - def freeze_text_layers(self): - for module in [self.block, self.final_layer_norm]: - freeze_model(module) - - @add_start_docstrings(PARALLELIZE_DOCSTRING) - def parallelize(self, device_map=None): - # Check validity of device_map - self.device_map = ( - get_device_map(len(self.block), range(torch.cuda.device_count())) if device_map is None else device_map - ) - assert_device_map(self.device_map, len(self.block)) - self.model_parallel = True - self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys())) - self.last_device = "cuda:" + str(max(self.device_map.keys())) - # Load onto devices - for k, v in self.device_map.items(): - for layer in v: - cuda_device = "cuda:" + str(k) - self.block[layer] = self.block[layer].to(cuda_device) - - # Set embed_tokens to first layer - self.embed_tokens = self.embed_tokens.to(self.first_device) - # Set final layer norm to last device - self.final_layer_norm = self.final_layer_norm.to(self.last_device) - - @add_start_docstrings(PARALLELIZE_DOCSTRING) - def deparallelize(self): - self.model_parallel = False - self.device_map = None - self.first_device = "cpu" - self.last_device = "cpu" - for i in range(len(self.block)): - self.block[i] = self.block[i].to("cpu") - self.embed_tokens = self.embed_tokens.to("cpu") - self.final_layer_norm = self.final_layer_norm.to("cpu") - torch.cuda.empty_cache() - - def get_input_embeddings(self): - return self.embed_tokens - - def set_input_embeddings(self, new_embeddings): - self.embed_tokens = new_embeddings - - def forward( - self, - input_ids=None, - attention_mask=None, - encoder_hidden_states=None, - encoder_attention_mask=None, - inputs_embeds=None, - pixel_values: Optional[torch.FloatTensor] = None, - image_attention_mask: Optional[torch.Tensor] = None, - head_mask=None, - cross_attn_head_mask=None, - past_key_values=None, - use_cache=None, - output_attentions=None, - output_hidden_states=None, - return_dict=None, - ): - # Model parallel - if self.model_parallel: - torch.cuda.set_device(self.first_device) - self.embed_tokens = self.embed_tokens.to(self.first_device) - use_cache = use_cache if use_cache is not None else self.config.use_cache - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - if input_ids is not None and inputs_embeds is not None: - err_msg_prefix = "decoder_" if self.is_decoder else "" - raise ValueError( - f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" - ) - elif input_ids is not None: - input_shape = input_ids.size() - input_ids = input_ids.view(-1, input_shape[-1]) - elif inputs_embeds is not None: - input_shape = inputs_embeds.size()[:-1] - else: - err_msg_prefix = "decoder_" if self.is_decoder else "" - raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds") - - if inputs_embeds is None: - assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings" - inputs_embeds = self.embed_tokens(input_ids) - - batch_size, seq_length = input_shape - - # required mask seq length can be calculated via length of past - mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length - - if use_cache is True: - assert self.is_decoder, f"`use_cache` can only be set to `True` if {self} is used as a decoder" - - if attention_mask is None: - attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) - if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None: - encoder_seq_length = encoder_hidden_states.shape[1] - encoder_attention_mask = torch.ones( - batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long - ) - - # initialize past_key_values with `None` if past does not exist - if past_key_values is None: - past_key_values = [None] * len(self.block) - - # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] - # ourselves in which case we just need to make it broadcastable to all heads. - extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) - - # If a 2D or 3D attention mask is provided for the cross-attention - # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] - if self.is_decoder and encoder_hidden_states is not None: - encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() - encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) - if encoder_attention_mask is None: - encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device) - encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) - else: - encoder_extended_attention_mask = None - - # Prepare head mask if needed - head_mask = self.get_head_mask(head_mask, self.config.num_layers) - cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) - present_key_value_states = () if use_cache else None - all_hidden_states = () if output_hidden_states else None - all_attentions = () if output_attentions else None - all_cross_attentions = () if (output_attentions and self.is_decoder) else None - position_bias = None - encoder_decoder_position_bias = None - - hidden_states = self.dropout(inputs_embeds) - - if not self.is_decoder: - pixel_values = pixel_values.to(dtype=self.dtype) # fp16 compatibility - batch_size, num_images = pixel_values.size(0), pixel_values.size(1) - pixel_values = pixel_values.contiguous().view(batch_size * num_images, *pixel_values.shape[2:]) - # Get sequence from the vision encoder - image_hidden_states = self.vision_model(pixel_values=pixel_values).last_hidden_state - image_seq_len, image_hidden_size = image_hidden_states.size(1), image_hidden_states.size(2) - image_hidden_states = image_hidden_states.view(batch_size, num_images * image_seq_len, image_hidden_size) - # Make image_attention_mask compatible with hidden states - # TODO: these steps are overly complex -> refactor - text_seq_len = image_attention_mask.size(1) - image_attention_mask = image_attention_mask.unsqueeze(-1) - image_attention_mask = image_attention_mask.repeat(1, 1, 1, image_seq_len) - image_attention_mask = image_attention_mask.view(batch_size, text_seq_len, num_images * image_seq_len) - - if image_hidden_states is not None: - image_batch_size, image_sequence_length, _ = image_hidden_states.size() - image_hidden_shape = (image_batch_size, image_sequence_length) - if image_attention_mask is None: - image_attention_mask = torch.ones(image_hidden_shape, device=hidden_states.device) - extended_image_attention_mask = self.invert_attention_mask(image_attention_mask) - else: - extended_image_attention_mask = None - - for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): - layer_head_mask = head_mask[i] - cross_attn_layer_head_mask = cross_attn_head_mask[i] - # Model parallel - if self.model_parallel: - torch.cuda.set_device(hidden_states.device) - # Ensure that attention_mask is always on the same device as hidden_states - if attention_mask is not None: - attention_mask = attention_mask.to(hidden_states.device) - if position_bias is not None: - position_bias = position_bias.to(hidden_states.device) - if encoder_hidden_states is not None: - encoder_hidden_states = encoder_hidden_states.to(hidden_states.device) - if encoder_extended_attention_mask is not None: - encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device) - if encoder_decoder_position_bias is not None: - encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device) - if layer_head_mask is not None: - layer_head_mask = layer_head_mask.to(hidden_states.device) - if cross_attn_layer_head_mask is not None: - cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device) - if output_hidden_states: - all_hidden_states = all_hidden_states + (hidden_states,) - - def vblock( - main_block, - hidden_states, - attention_mask, - position_bias, - encoder_hidden_states, - encoder_extended_attention_mask, - encoder_decoder_position_bias, - layer_head_mask, - cross_attn_layer_head_mask, - past_key_value, - use_cache, - output_attentions, - image_hidden_states, - image_attention_mask, - layer_idx, - cross_layer_interval, - gated_cross_attn_layers, - is_decoder, - ): - if not is_decoder and (layer_idx % cross_layer_interval == 0): - xblock = gated_cross_attn_layers[layer_idx // cross_layer_interval] - outputs = xblock( - hidden_states, - encoder_hidden_states=image_hidden_states, - encoder_attention_mask=image_attention_mask, - encoder_decoder_position_bias=None, - use_cache=use_cache, - output_attentions=output_attentions, - ) - hidden_states = outputs[0] - - layer_outputs = main_block( - hidden_states, - attention_mask=attention_mask, - position_bias=position_bias, - encoder_hidden_states=encoder_hidden_states, - encoder_attention_mask=encoder_extended_attention_mask, - encoder_decoder_position_bias=encoder_decoder_position_bias, - layer_head_mask=layer_head_mask, - cross_attn_layer_head_mask=cross_attn_layer_head_mask, - past_key_value=past_key_value, - use_cache=use_cache, - output_attentions=output_attentions, - ) - - return layer_outputs - - if self.is_decoder: - self.cross_layer_interval = None - self.gated_cross_attn_layers = None - image_hidden_states = None - extended_image_attention_mask = None - - if self.gradient_checkpointing and self.training: - # past_key_value is always None with gradient checkpointing - past_key_value = None - if use_cache: - logger.warning_once( - "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." - ) - use_cache = False - - layer_outputs = checkpoint( - vblock, - layer_module, - hidden_states, - extended_attention_mask, - position_bias, - encoder_hidden_states, - encoder_extended_attention_mask, - encoder_decoder_position_bias, - head_mask[i], - cross_attn_layer_head_mask, - past_key_value, - use_cache, - output_attentions, - image_hidden_states, - extended_image_attention_mask, - i, - self.cross_layer_interval, - self.gated_cross_attn_layers, - self.is_decoder, - ) - else: - layer_outputs = vblock( - layer_module, - hidden_states, - attention_mask=extended_attention_mask, - position_bias=position_bias, - encoder_hidden_states=encoder_hidden_states, - encoder_extended_attention_mask=encoder_extended_attention_mask, - encoder_decoder_position_bias=encoder_decoder_position_bias, - layer_head_mask=head_mask[i], - cross_attn_layer_head_mask=cross_attn_layer_head_mask, - past_key_value=past_key_value, - use_cache=use_cache, - output_attentions=output_attentions, - image_hidden_states=image_hidden_states, - image_attention_mask=extended_image_attention_mask, - layer_idx=i, - cross_layer_interval=self.cross_layer_interval, - gated_cross_attn_layers=self.gated_cross_attn_layers, - is_decoder=self.is_decoder, - ) - - # layer_outputs is a tuple with: - # hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) - if use_cache is False: - layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] - - hidden_states, present_key_value_state = layer_outputs[:2] - - # We share the position biases between the layers - the first layer store them - # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), - # (cross-attention position bias), (cross-attention weights) - position_bias = layer_outputs[2] - if self.is_decoder and encoder_hidden_states is not None: - encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] - # append next layer key value states - if use_cache: - present_key_value_states = present_key_value_states + (present_key_value_state,) - - if output_attentions: - all_attentions = all_attentions + (layer_outputs[3],) - if self.is_decoder: - all_cross_attentions = all_cross_attentions + (layer_outputs[5],) - - # Model Parallel: If it's the last layer for that device, put things on the next device - if self.model_parallel: - for k, v in self.device_map.items(): - if i == v[-1] and "cuda:" + str(k) != self.last_device: - hidden_states = hidden_states.to("cuda:" + str(k + 1)) - - hidden_states = self.final_layer_norm(hidden_states) - hidden_states = self.dropout(hidden_states) - - # Add last layer - if output_hidden_states: - all_hidden_states = all_hidden_states + (hidden_states,) - - if not return_dict: - return tuple( - v - for v in [ - hidden_states, - present_key_value_states, - all_hidden_states, - all_attentions, - all_cross_attentions, - ] - if v is not None - ) - return BaseModelOutputWithPastAndCrossAttentions( - last_hidden_state=hidden_states, - past_key_values=present_key_value_states, - hidden_states=all_hidden_states, - attentions=all_attentions, - cross_attentions=all_cross_attentions, - ) - - -T5_START_DOCSTRING = r""" - - The T5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text - Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan - Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a - text-to-text denoising generative setting. - - This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the - library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads - etc.) - - This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. - Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage - and behavior. - - Parameters: - config ([`T5Config`]): Model configuration class with all the parameters of the model. - Initializing with a config file does not load the weights associated with the model, only the - configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. -""" - -T5_INPUTS_DOCSTRING = r""" - Args: - input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): - Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you - should be able to pad the inputs on both the right and the left. - - Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for detail. - - [What are input IDs?](../glossary#input-ids) - - To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). - attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): - Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - - - 1 for tokens that are **not masked**, - - 0 for tokens that are **masked**. - - [What are attention masks?](../glossary#attention-mask) - decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): - Indices of decoder input sequence tokens in the vocabulary. - - Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for details. - - [What are decoder input IDs?](../glossary#decoder-input-ids) - - T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` - is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). - - To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5 - Training](./t5#training). - decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): - Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also - be used by default. - head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): - Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, - 1]`: - - - 1 indicates the head is **not masked**, - - 0 indicates the head is **masked**. - - decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): - Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, - 1]`: - - - 1 indicates the head is **not masked**, - - 0 indicates the head is **masked**. - - cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): - Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in - `[0, 1]`: - - - 1 indicates the head is **not masked**, - - 0 indicates the head is **masked**. - - encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): - Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) - `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at - the output of the last layer of the encoder. Used in the cross-attention of the decoder. - past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): - Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. - - If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that - don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all - `decoder_input_ids` of shape `(batch_size, sequence_length)`. - inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): - Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This - is useful if you want more control over how to convert `input_ids` indices into associated vectors than the - model's internal embedding lookup matrix. - decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): - Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded - representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be - input (see `past_key_values`). This is useful if you want more control over how to convert - `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. - - If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value - of `inputs_embeds`. - - use_cache (`bool`, *optional*): - If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see - `past_key_values`). - - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned - tensors for more detail. - output_hidden_states (`bool`, *optional*): - Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for - more detail. - return_dict (`bool`, *optional*): - Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. -""" - -T5_ENCODER_INPUTS_DOCSTRING = r""" - Args: - input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): - Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you - should be able to pad the inputs on both the right and the left. - - Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for detail. - - To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). - attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): - Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - - - 1 for tokens that are **not masked**, - - 0 for tokens that are **masked**. - - [What are attention masks?](../glossary#attention-mask) - head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): - Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - - - 1 indicates the head is **not masked**, - - 0 indicates the head is **masked**. - - inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): - Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This - is useful if you want more control over how to convert `input_ids` indices into associated vectors than the - model's internal embedding lookup matrix. - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned - tensors for more detail. - output_hidden_states (`bool`, *optional*): - Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for - more detail. - return_dict (`bool`, *optional*): - Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. -""" - -# Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask -__HEAD_MASK_WARNING_MSG = """ -The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently, -`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions. -If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers, -num_heads)`. -""" - - -@add_start_docstrings( - "The bare T5 Model transformer outputting raw hidden-states without any specific head on top.", - T5_START_DOCSTRING, -) -class VT5Model(VT5PreTrainedModel): - _keys_to_ignore_on_load_missing = [ - r"encoder.embed_tokens.weight", - r"decoder.embed_tokens.weight", - ] - _keys_to_ignore_on_load_unexpected = [ - r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight", - ] - - def __init__(self, config: T5Config, vision_model=None): - super().__init__(config) - self.shared = DecoupledEmbedding( - num_embeddings=config.vocab_size, - num_additional_embeddings=config.additional_vocab_size, - embedding_dim=config.d_model, - partially_freeze=config.freeze_text_layers, - ) - - encoder_config = copy.deepcopy(config) - encoder_config.is_decoder = False - encoder_config.use_cache = False - encoder_config.is_encoder_decoder = False - self.encoder = VT5Stack(encoder_config, self.shared, vision_model) - - decoder_config = copy.deepcopy(config) - decoder_config.is_decoder = True - decoder_config.is_encoder_decoder = False - decoder_config.num_layers = config.num_decoder_layers - self.decoder = VT5Stack(decoder_config, self.shared) - - # Initialize weights and apply final processing - self.post_init() - - # Model parallel - self.model_parallel = False - self.device_map = None - - self.freeze_relevant_params(config) - - def freeze_relevant_params(self, config=None): - self.encoder.freeze_relevant_params(config) - self.decoder.freeze_relevant_params(config) - - @add_start_docstrings(PARALLELIZE_DOCSTRING) - def parallelize(self, device_map=None): - self.device_map = ( - get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) - if device_map is None - else device_map - ) - assert_device_map(self.device_map, len(self.encoder.block)) - self.encoder.parallelize(self.device_map) - self.decoder.parallelize(self.device_map) - self.model_parallel = True - - @add_start_docstrings(DEPARALLELIZE_DOCSTRING) - def deparallelize(self): - self.encoder.deparallelize() - self.decoder.deparallelize() - self.encoder = self.encoder.to("cpu") - self.decoder = self.decoder.to("cpu") - self.model_parallel = False - self.device_map = None - torch.cuda.empty_cache() - - def get_input_embeddings(self): - return self.shared - - def set_input_embeddings(self, new_embeddings): - self.shared = new_embeddings - self.encoder.set_input_embeddings(new_embeddings) - self.decoder.set_input_embeddings(new_embeddings) - - def get_encoder(self): - return self.encoder - - def get_decoder(self): - return self.decoder - - def _prune_heads(self, heads_to_prune): - """ - Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base - class PreTrainedModel - """ - for layer, heads in heads_to_prune.items(): - self.encoder.layer[layer].attention.prune_heads(heads) - - @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) - @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) - def forward( - self, - input_ids: Optional[torch.LongTensor] = None, - attention_mask: Optional[torch.FloatTensor] = None, - decoder_input_ids: Optional[torch.LongTensor] = None, - decoder_attention_mask: Optional[torch.BoolTensor] = None, - head_mask: Optional[torch.FloatTensor] = None, - decoder_head_mask: Optional[torch.FloatTensor] = None, - cross_attn_head_mask: Optional[torch.Tensor] = None, - encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, - past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, - inputs_embeds: Optional[torch.Tensor] = None, - decoder_inputs_embeds: Optional[torch.Tensor] = None, - pixel_values: Optional[torch.FloatTensor] = None, - image_attention_mask: Optional[torch.Tensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: - r""" - Returns: - - Example: - - ```python - >>> from transformers import T5Tokenizer, T5Model - - >>> tokenizer = T5Tokenizer.from_pretrained("t5-small") - >>> model = T5Model.from_pretrained("t5-small") - - >>> input_ids = tokenizer( - ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" - ... ).input_ids # Batch size 1 - >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 - - >>> # preprocess: Prepend decoder_input_ids with start token which is pad token for T5Model. - >>> # This is not needed for torch's T5ForConditionalGeneration as it does this internally using labels arg. - >>> decoder_input_ids = model._shift_right(decoder_input_ids) - - >>> # forward pass - >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) - >>> last_hidden_states = outputs.last_hidden_state - ```""" - use_cache = use_cache if use_cache is not None else self.config.use_cache - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask - if head_mask is not None and decoder_head_mask is None: - if self.config.num_layers == self.config.num_decoder_layers: - warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) - decoder_head_mask = head_mask - - # Encode if needed (training, first prediction pass) - if encoder_outputs is None: - encoder_outputs = self.encoder( - input_ids=input_ids, - attention_mask=attention_mask, - inputs_embeds=inputs_embeds, - pixel_values=pixel_values, - image_attention_mask=image_attention_mask, - head_mask=head_mask, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): - encoder_outputs = BaseModelOutput( - last_hidden_state=encoder_outputs[0], - hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, - attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, - ) - - hidden_states = encoder_outputs[0] - - # Set device for model parallelism - if self.model_parallel: - torch.cuda.set_device(self.decoder.first_device) - hidden_states = hidden_states.to(self.decoder.first_device) - if decoder_input_ids is not None: - decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) - if attention_mask is not None: - attention_mask = attention_mask.to(self.decoder.first_device) - if decoder_attention_mask is not None: - decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device) - - # Decode - decoder_outputs = self.decoder( - input_ids=decoder_input_ids, - attention_mask=decoder_attention_mask, - inputs_embeds=decoder_inputs_embeds, - past_key_values=past_key_values, - encoder_hidden_states=hidden_states, - encoder_attention_mask=attention_mask, - head_mask=decoder_head_mask, - cross_attn_head_mask=cross_attn_head_mask, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - - if not return_dict: - return decoder_outputs + encoder_outputs - - return Seq2SeqModelOutput( - last_hidden_state=decoder_outputs.last_hidden_state, - past_key_values=decoder_outputs.past_key_values, - decoder_hidden_states=decoder_outputs.hidden_states, - decoder_attentions=decoder_outputs.attentions, - cross_attentions=decoder_outputs.cross_attentions, - encoder_last_hidden_state=encoder_outputs.last_hidden_state, - encoder_hidden_states=encoder_outputs.hidden_states, - encoder_attentions=encoder_outputs.attentions, - ) - - -@add_start_docstrings("""T5 Model with a `language modeling` head on top.""", T5_START_DOCSTRING) -class VT5ForConditionalGeneration(VT5PreTrainedModel): - _keys_to_ignore_on_load_missing = [ - r"encoder.embed_tokens.weight", - r"decoder.embed_tokens.weight", - r"lm_head.weight", - ] - _keys_to_ignore_on_load_unexpected = [ - r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight", - ] - - def __init__(self, config: T5Config, vision_model=None): - super().__init__(config) - self.model_dim = config.d_model - - self.shared = DecoupledEmbedding( - num_embeddings=config.vocab_size, - num_additional_embeddings=config.additional_vocab_size, - embedding_dim=config.d_model, - partially_freeze=config.freeze_text_layers, - ) - - encoder_config = copy.deepcopy(config) - encoder_config.is_decoder = False - encoder_config.use_cache = False - encoder_config.is_encoder_decoder = False - self.encoder = VT5Stack(encoder_config, self.shared, vision_model=vision_model) - - decoder_config = copy.deepcopy(config) - decoder_config.is_decoder = True - decoder_config.is_encoder_decoder = False - decoder_config.num_layers = config.num_decoder_layers - self.decoder = VT5Stack(decoder_config, self.shared) - - self.lm_head = DecoupledLinear( - in_features=config.d_model, - out_features=config.vocab_size, - out_additional_features=config.additional_vocab_size, - bias=False, - partially_freeze=config.freeze_lm_head, - ) - - # Initialize weights and apply final processing - self.post_init() - - # Model parallel - self.model_parallel = False - self.device_map = None - - self.freeze_relevant_params(config) - - def freeze_relevant_params(self, config=None): - self.encoder.freeze_relevant_params(config) - self.decoder.freeze_relevant_params(config) - - @add_start_docstrings(PARALLELIZE_DOCSTRING) - def parallelize(self, device_map=None): - self.device_map = ( - get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) - if device_map is None - else device_map - ) - assert_device_map(self.device_map, len(self.encoder.block)) - self.encoder.parallelize(self.device_map) - self.decoder.parallelize(self.device_map) - self.lm_head = self.lm_head.to(self.decoder.first_device) - self.model_parallel = True - - @add_start_docstrings(DEPARALLELIZE_DOCSTRING) - def deparallelize(self): - self.encoder.deparallelize() - self.decoder.deparallelize() - self.encoder = self.encoder.to("cpu") - self.decoder = self.decoder.to("cpu") - self.lm_head = self.lm_head.to("cpu") - self.model_parallel = False - self.device_map = None - torch.cuda.empty_cache() - - def get_input_embeddings(self): - return self.shared - - def set_input_embeddings(self, new_embeddings): - self.shared = new_embeddings - self.encoder.set_input_embeddings(new_embeddings) - self.decoder.set_input_embeddings(new_embeddings) - - def set_output_embeddings(self, new_embeddings): - self.lm_head = new_embeddings - - def get_output_embeddings(self): - return self.lm_head - - def tie_weights(self): - """ - Overwrite `transformers.modeling_utils.PreTrainedModel.tie_weights` to handle the case of DecoupledLinear and DecoupledEmbedding. - """ - output_embeddings = self.get_output_embeddings() - input_embeddings = self.get_input_embeddings() - - if getattr(self.config, "tie_word_embeddings", True): - output_embeddings.weight = input_embeddings.weight - if input_embeddings.num_additional_embeddings > 0: - assert output_embeddings.out_additional_features == input_embeddings.num_additional_embeddings - output_embeddings.additional_fc.weight = input_embeddings.additional_embedding.weight - - if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"): - output_embeddings.out_features = input_embeddings.num_embeddings - if hasattr(output_embeddings, "out_additional_features") and hasattr( - input_embeddings, "num_additional_embeddings" - ): - output_embeddings.out_additional_features = input_embeddings.num_additional_embeddings - - def get_encoder(self): - return self.encoder - - def get_decoder(self): - return self.decoder - - @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) - @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) - def forward( - self, - input_ids: Optional[torch.LongTensor] = None, - attention_mask: Optional[torch.FloatTensor] = None, - decoder_input_ids: Optional[torch.LongTensor] = None, - decoder_attention_mask: Optional[torch.BoolTensor] = None, - head_mask: Optional[torch.FloatTensor] = None, - decoder_head_mask: Optional[torch.FloatTensor] = None, - cross_attn_head_mask: Optional[torch.Tensor] = None, - encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, - past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - decoder_inputs_embeds: Optional[torch.FloatTensor] = None, - pixel_values: Optional[torch.FloatTensor] = None, - image_attention_mask: Optional[torch.Tensor] = None, - labels: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: - r""" - labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): - Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., - config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for - labels in `[0, ..., config.vocab_size]` - - Returns: - - Examples: - - ```python - >>> from transformers import T5Tokenizer, T5ForConditionalGeneration - - >>> tokenizer = T5Tokenizer.from_pretrained("t5-small") - >>> model = T5ForConditionalGeneration.from_pretrained("t5-small") - - >>> # training - >>> input_ids = tokenizer("The walks in park", return_tensors="pt").input_ids - >>> labels = tokenizer(" cute dog the ", return_tensors="pt").input_ids - >>> outputs = model(input_ids=input_ids, labels=labels) - >>> loss = outputs.loss - >>> logits = outputs.logits - - >>> # inference - >>> input_ids = tokenizer( - ... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt" - ... ).input_ids # Batch size 1 - >>> outputs = model.generate(input_ids) - >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) - >>> # studies have shown that owning a dog is good for you. - ```""" - use_cache = use_cache if use_cache is not None else self.config.use_cache - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask - if head_mask is not None and decoder_head_mask is None: - if self.config.num_layers == self.config.num_decoder_layers: - warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) - decoder_head_mask = head_mask - - # Encode if needed (training, first prediction pass) - if encoder_outputs is None: - # Convert encoder inputs in embeddings if needed - encoder_outputs = self.encoder( - input_ids=input_ids, - attention_mask=attention_mask, - inputs_embeds=inputs_embeds, - pixel_values=pixel_values, - image_attention_mask=image_attention_mask, - head_mask=head_mask, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): - encoder_outputs = BaseModelOutput( - last_hidden_state=encoder_outputs[0], - hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, - attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, - ) - - hidden_states = encoder_outputs[0] - - if self.model_parallel: - torch.cuda.set_device(self.decoder.first_device) - - if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: - # get decoder inputs from shifting lm labels to the right - decoder_input_ids = self._shift_right(labels) - - # Set device for model parallelism - if self.model_parallel: - torch.cuda.set_device(self.decoder.first_device) - hidden_states = hidden_states.to(self.decoder.first_device) - if decoder_input_ids is not None: - decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) - if attention_mask is not None: - attention_mask = attention_mask.to(self.decoder.first_device) - if decoder_attention_mask is not None: - decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device) - - # Decode - decoder_outputs = self.decoder( - input_ids=decoder_input_ids, - attention_mask=decoder_attention_mask, - inputs_embeds=decoder_inputs_embeds, - past_key_values=past_key_values, - encoder_hidden_states=hidden_states, - encoder_attention_mask=attention_mask, - head_mask=decoder_head_mask, - cross_attn_head_mask=cross_attn_head_mask, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - - sequence_output = decoder_outputs[0] - - # Set device for model parallelism - if self.model_parallel: - torch.cuda.set_device(self.encoder.first_device) - self.lm_head = self.lm_head.to(self.encoder.first_device) - sequence_output = sequence_output.to(self.lm_head.weight.device) - - if self.config.tie_word_embeddings: - # Rescale output before projecting on vocab - # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 - sequence_output = sequence_output * (self.model_dim**-0.5) - - lm_logits = self.lm_head(sequence_output) - - loss = None - if labels is not None: - loss_fct = CrossEntropyLoss(ignore_index=-100) - loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) - # TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666 - - if not return_dict: - output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs - return ((loss,) + output) if loss is not None else output - - return Seq2SeqLMOutput( - loss=loss, - logits=lm_logits, - past_key_values=decoder_outputs.past_key_values, - decoder_hidden_states=decoder_outputs.hidden_states, - decoder_attentions=decoder_outputs.attentions, - cross_attentions=decoder_outputs.cross_attentions, - encoder_last_hidden_state=encoder_outputs.last_hidden_state, - encoder_hidden_states=encoder_outputs.hidden_states, - encoder_attentions=encoder_outputs.attentions, - ) - - def prepare_inputs_for_generation( - self, - input_ids, - past=None, - attention_mask=None, - head_mask=None, - decoder_head_mask=None, - cross_attn_head_mask=None, - use_cache=None, - encoder_outputs=None, - **kwargs, - ): - # cut decoder_input_ids if past is used - if past is not None: - input_ids = input_ids[:, -1:] - - return { - "decoder_input_ids": input_ids, - "past_key_values": past, - "encoder_outputs": encoder_outputs, - "attention_mask": attention_mask, - "head_mask": head_mask, - "decoder_head_mask": decoder_head_mask, - "cross_attn_head_mask": cross_attn_head_mask, - "use_cache": use_cache, - } - - def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): - return self._shift_right(labels) - - def _reorder_cache(self, past, beam_idx): - # if decoder past is not included in output - # speedy decoding is disabled and no need to reorder - if past is None: - logger.warning("You might want to consider setting `use_cache=True` to speed up decoding") - return past - - reordered_decoder_past = () - for layer_past_states in past: - # get the correct batch idx from layer past batch dim - # batch dim of `past` is at 2nd position - reordered_layer_past_states = () - for layer_past_state in layer_past_states: - # need to set correct `past` for each of the four key / value states - reordered_layer_past_states = reordered_layer_past_states + ( - layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)), - ) - - assert reordered_layer_past_states[0].shape == layer_past_states[0].shape - assert len(reordered_layer_past_states) == len(layer_past_states) - - reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,) - return reordered_decoder_past - - def get_model_tflops_per_batch_per_gpu(self, hparams, data_param, tokenizer, max_num_images): - config_vl_model = self.config - - vloom_embed_size = config_vl_model.d_model - vision_config = self.encoder.vision_model.config - num_language_layers = config_vl_model.num_layers - ffn_inner_size = config_vl_model.d_ff - - # Get vision model blocks infos - vision_patch_size = vision_config.patch_size - vision_hidden_size = vision_config.hidden_size - num_vision_layers = vision_config.num_hidden_layers - # The +1 is for the CLS token - single_image_seq_len = (vision_config.image_size // vision_patch_size) ** 2 + 1 - vision_exp_factor = vision_config.intermediate_size // vision_hidden_size - - # Get language and cross-att blocks infos - num_cross_attn_layers = num_language_layers // config_vl_model.cross_layer_interval - language_seq_len = data_param.max_seq_len - language_exp_factor = (ffn_inner_size // vloom_embed_size) if ffn_inner_size is not None else 4 - cross_att_exp_factor = (ffn_inner_size // vloom_embed_size) if ffn_inner_size is not None else 4 - - encoder_language_tflops_per_batch_per_gpu = compute_tflops_per_batch_per_gpu( - num_layers=num_language_layers, - batch_size=hparams.batch_size_per_gpu, - q_seq_len=language_seq_len, - k_seq_len=language_seq_len, - hidden_size=vloom_embed_size, - kv_in_dim=vloom_embed_size, - ff_exp_factor=language_exp_factor, - grad_acc_size=hparams.grad_acc_size, - vocab_size=None, - count_backward=True, # Always True regardless of freezing, because gradients are computed for cross-attentions - use_grad_checkpointing=False, - ) - image_gated_cross_attention_tflops_per_batch_per_gpu = compute_tflops_per_batch_per_gpu( - num_layers=num_cross_attn_layers, - batch_size=hparams.batch_size_per_gpu, - q_seq_len=language_seq_len, - k_seq_len=single_image_seq_len * max_num_images, - hidden_size=vloom_embed_size, - kv_in_dim=vision_hidden_size, - ff_exp_factor=cross_att_exp_factor, - grad_acc_size=hparams.grad_acc_size, - vocab_size=None, - count_backward=True, - use_grad_checkpointing=False, - ) - vision_tflops_per_batch_per_gpu = compute_tflops_per_batch_per_gpu( - num_layers=num_vision_layers, - batch_size=hparams.batch_size_per_gpu * max_num_images, - q_seq_len=single_image_seq_len, - k_seq_len=single_image_seq_len, - hidden_size=vision_hidden_size, - kv_in_dim=vision_hidden_size, - ff_exp_factor=vision_exp_factor, - grad_acc_size=hparams.grad_acc_size, - vocab_size=None, - count_backward=not hparams.model_params["freeze_vision_layers"], - use_grad_checkpointing=False, - ) - - _, target_seq_len = random_spans_helper( - inputs_length=data_param.max_seq_len, - noise_density=data_param.t5_mlm_noise_density, - mean_noise_span_length=data_param.t5_mlm_mean_noise_span_length, - extra_tokens_per_span_inputs=1, - extra_tokens_per_span_targets=1, - verbose=False, - ) - - decoder_language_tflops_per_batch_per_gpu = compute_tflops_per_batch_per_gpu( - num_layers=config_vl_model.num_decoder_layers, - batch_size=hparams.batch_size_per_gpu, - q_seq_len=target_seq_len, - k_seq_len=target_seq_len, - hidden_size=vloom_embed_size, - kv_in_dim=vloom_embed_size, - ff_exp_factor=language_exp_factor, - grad_acc_size=hparams.grad_acc_size, - vocab_size=tokenizer.vocab_size, - count_backward=True, # Always True regardless of freezing, because gradients are computed for cross-attentions - use_grad_checkpointing=False, - ) - - encoder_decoder_cross_attention_tflops_per_batch_per_gpu = compute_tflops_per_batch_per_gpu( - num_layers=config_vl_model.num_decoder_layers, - batch_size=hparams.batch_size_per_gpu, - q_seq_len=target_seq_len, - k_seq_len=language_seq_len, - hidden_size=vloom_embed_size, - kv_in_dim=vloom_embed_size, - ff_exp_factor=0, # There is only one pair of expansion linear layers per pair of self attention and cross attention blocks - grad_acc_size=hparams.grad_acc_size, - vocab_size=None, - count_backward=True, - use_grad_checkpointing=False, - ) - return ( - encoder_language_tflops_per_batch_per_gpu - + image_gated_cross_attention_tflops_per_batch_per_gpu - + vision_tflops_per_batch_per_gpu - + decoder_language_tflops_per_batch_per_gpu - + encoder_decoder_cross_attention_tflops_per_batch_per_gpu - )