import gradio as gr from transformers import AutoModelForVision2Seq, AutoProcessor, BitsAndBytesConfig import torch model_id = "HuggingFaceM4/idefics2-8b" quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.float16 ) processor = AutoProcessor.from_pretrained(model_id) model = AutoModelForVision2Seq.from_pretrained(model_id, torch_dtype=torch.float16, quantization_config=quantization_config) def respond(multimodal_input): images = multimodal_input["files"] content = [{"type": "image"} for _ in images] content.append({"type": "text", "text": multimodal_input["text"]}) messages = [{"role": "user", "content": content}] prompt = processor.apply_chat_template(messages, add_generation_prompt=True) inputs = processor(text=prompt, images=[images], return_tensors="pt") inputs = {k: v.to(model.device) for k, v in inputs.items()} num_tokens = len(inputs["input_ids"][0]) with torch.inference_mode(): generated_ids = model.generate(**inputs, max_new_tokens=500) new_tokens = generated_ids[:, num_tokens:] generated_text = processor.batch_decode(new_tokens, skip_special_tokens=True)[0] return generated_text gr.Interface( respond, inputs=[gr.MultimodalTextbox(file_types=["image"], show_label=False)], outputs="text", title="IDEFICS2-8B DPO", description="Try IDEFICS2-8B fine-tuned using direct preference optimization (DPO) in this demo. Learn more about vision language model DPO integration of TRL [here](https://huggingface.co/blog/dpo_vlm).", examples=[ {"text": "What is the type of flower in the image and what insect is on it?", "files": ["./bee.jpg"]}, {"text": "Describe the image", "files": ["./howl.jpg"]}, ], ).launch()