import os from huggingface_hub import Repository H4_TOKEN = os.environ.get("H4_TOKEN", None) def get_all_requested_models(requested_models_dir): depth = 1 file_names = [] for root, dirs, files in os.walk(requested_models_dir): current_depth = root.count(os.sep) - requested_models_dir.count(os.sep) if current_depth == depth: file_names.extend([os.path.join(root, file) for file in files]) return set([file_name.lower().split("eval_requests/")[1] for file_name in file_names]) def load_all_info_from_hub(HUMAN_EVAL_REPO, GPT_4_EVAL_REPO): human_eval_repo = None if H4_TOKEN and not os.path.isdir("./human_evals"): print("Pulling human evaluation repo") human_eval_repo = Repository( local_dir="./human_evals/", clone_from=HUMAN_EVAL_REPO, use_auth_token=H4_TOKEN, repo_type="dataset", ) human_eval_repo.git_pull() gpt_4_eval_repo = None if H4_TOKEN and not os.path.isdir("./gpt_4_evals"): print("Pulling GPT-4 evaluation repo") gpt_4_eval_repo = Repository( local_dir="./gpt_4_evals/", clone_from=GPT_4_EVAL_REPO, use_auth_token=H4_TOKEN, repo_type="dataset", ) gpt_4_eval_repo.git_pull() return human_eval_repo, gpt_4_eval_repo #def load_results(model, benchmark, metric): # file_path = os.path.join("autoevals", model, f"{model}-eval_{benchmark}.json") # if not os.path.exists(file_path): # return 0.0, None # with open(file_path) as fp: # data = json.load(fp) # accs = np.array([v[metric] for k, v in data["results"].items()]) # mean_acc = np.mean(accs) # return mean_acc, data["config"]["model_args"]