# PART 0.5: Import necessary libraries - UNMARK # if runned local import streamlit as st import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from scipy.stats import zscore import geopandas as gpd import altair as alt from vega_datasets import data import re # USED FOR OFFLINE VERSION (TO ALSO DOWNLOAD THE ZIP FILES FROM CLOUD) # from duckduckgo_search import DDGS # import zipfile # import requests # PART 1: Function to load the data parts and use pd.concat to combine the 3 parts to one dataset @st.cache_data # Cache the function to enhance performance - tells streamlit to keep the dataset in memory/cache def loading_dataset(): # Setting Title st.title("πŸ’° KIVA - Microloans Statistics πŸͺ™") # LOADING BAR: progress_bar = st.progress(2, text="Setting urls...") # PLEASE NOTICE - SOME PARTS HERE IS DISABLED DUE TO CSV FILES ARE ALREADY IN REPO !!!! # Defination of url-paths # url1 = 'https://github.com/aaubs/ds-master/raw/main/data/assignments_datasets/KIVA/kiva_loans_part_0.csv.zip' # url2 = 'https://github.com/aaubs/ds-master/raw/main/data/assignments_datasets/KIVA/kiva_loans_part_1.csv.zip' # url3 = 'https://github.com/aaubs/ds-master/raw/main/data/assignments_datasets/KIVA/kiva_loans_part_2.csv.zip' # Loading the urls into requests to download data progress_bar.progress(9, text="Downloading datasets...1/3") # response1 = requests.get(url1) progress_bar.progress(32, text="Downloading datasets...2/3") # response2 = requests.get(url2) progress_bar.progress(50, text="Downloading datasets...3/3") # response3 = requests.get(url3) # Saves the .zip data as files progress_bar.progress(55, text="Saving dataset zip-file...1/3") # with open("kiva_loans_part_0.csv.zip", "wb") as file: # file.write(response1.content) progress_bar.progress(60, text="Saving dataset zip-file...2/3") # with open("kiva_loans_part_1.csv.zip", "wb") as file: # file.write(response2.content) progress_bar.progress(65, text="Saving dataset zip-file...3/3") # with open("kiva_loans_part_2.csv.zip", "wb") as file: # file.write(response3.content) # Unzip the files to get .csv progress_bar.progress(70, text="Unzipping dataset...1/3") # with zipfile.ZipFile("kiva_loans_part_0.csv.zip", 'r') as zip_ref: # zip_ref.extractall() progress_bar.progress(75, text="Unzipping dataset...2/3") # with zipfile.ZipFile("kiva_loans_part_1.csv.zip", 'r') as zip_ref: # zip_ref.extractall() progress_bar.progress(81, text="Unzipping dataset...3/3") # with zipfile.ZipFile("kiva_loans_part_2.csv.zip", 'r') as zip_ref: # zip_ref.extractall() # Loading partial datasets progress_bar.progress(83, text="Importing partial datasets...") data_part1 = pd.read_csv("kiva_loans_part_0.csv") progress_bar.progress(85, text="Importing partial datasets...") data_part2 = pd.read_csv("kiva_loans_part_1.csv") progress_bar.progress(87, text="Importing partial datasets...") data_part3 = pd.read_csv("kiva_loans_part_2.csv") # Combining the datasets into one df using pd.concat progress_bar.progress(89, text="Merging datasets...") data = pd.concat([data_part1, data_part2, data_part3]) # PART 2: CLEANING DATA & MANIPULATION # Drop columns we're not going to use progress_bar.progress(91, text="Dropping irrelevant columns & cleaning dataset...") data = data.drop(['tags', 'use', 'currency', 'country_code'], axis=1) #Dropping missing values using dropna data.dropna(inplace=True) #Removal of outliers progress_bar.progress(93, text="Removing outliers...") z_scores = zscore(data['loan_amount']) # Get boolean array indicating the presence of outliers # Using 2 & -2 z_scores to get 95% of data within 2 standard deviations data['outlier_loan_amount'] = (z_scores > 2) | (z_scores < -2) #Removing outliers data = data[~data['outlier_loan_amount']] # GENDER CLASSIFICATION (GROUPING GENDERS) progress_bar.progress(93, text="Creating gender groups...") loan_gender = data # COUNT MALE & FEMALE BORROWERS progress_bar.progress(94, text="Creating gender groups...") loan_gender['male_borrowers'] = loan_gender['borrower_genders'].apply(lambda x: len(re.findall(r'\bmale', x))) loan_gender['female_borrowers'] = loan_gender['borrower_genders'].apply(lambda x: len(re.findall(r'\bfemale', x))) # CALCULATE TOTAL BORROWER COUNT progress_bar.progress(96, text="Calculating gender groups...") loan_gender['borrowers_count'] = loan_gender['male_borrowers'] + loan_gender['female_borrowers'] # HANDLE SITUATIONS WHERE 'BORROWERS_COUNT' IS 0 TO AVOID DIVISION BY 0 progress_bar.progress(97, text="Creating gender groups...") loan_gender['male_borrower_ratio'] = loan_gender['male_borrowers'] / loan_gender['borrowers_count'].replace(0, 1) # FUNCTION TO CLASSIFY GENDER BASED ON RATIO def classify_genders(ratio): if ratio == 1: return 'male group' elif ratio == 0: return 'female group' else: return 'mixed group' progress_bar.progress(98, text="Applying gender mapping...") # APPLY GENDER CLASSIFICATION data['gender_class'] = loan_gender['male_borrower_ratio'].apply(classify_genders) #Done progress_bar.progress(100, None) return data data = loading_dataset() # PART 3: Setting up title and filter-sideheader st.sidebar.header("Filters πŸ“Š") ######################################################################################################################### # GENDER SIDEBAR # CREATE LIST OVER GENDERS all_gender = data['gender_class'].unique().tolist() # - REMOVED DUE TO GENDER WONT BE UPDATED IN DATASET # GENDER SIDEBAR MULTISELECT selected_gender = st.sidebar.multiselect("Select Gender Group πŸ§‘β€πŸ§‘β€πŸ§’", all_gender, default=all_gender) # Filtration of data based on sidebar filtered_data = data[data['gender_class'].isin(selected_gender)] ######################################################################################################################### # SECTOR SIDEBAR # CREATE LIST OVER ALL SECTORS all_sectors = data['sector'].unique().tolist() # SECTOR SIDEBAR MULTISELECT selected_sector = st.sidebar.multiselect("Select Sectors πŸ’Ό", all_sectors, default=all_sectors) # Filtration of data based on sidebar filtered_data = filtered_data[filtered_data['sector'].isin(selected_sector)] ######################################################################################################################### # COUNTRY SIDEBAR # CALCULATE TOP 10 COUNTRIES & CREATE A LIST top_countries = data.groupby('country').size().nlargest(10).index.tolist() # COUNTRY SIDEBAR MULTISELECT selected_country = st.sidebar.multiselect( "Select Country πŸ‡ΊπŸ‡³", top_countries, default=top_countries) # Filtration of data based on sidebar filtered_data = filtered_data[filtered_data['country'].isin(selected_country)] ######################################################################################################################### # CHECK IF CHOICE HAS BEEN MADE ON GENDER GROUP, SECTORS & COUNTRY # GENDER - NO CHOICE WARNING if not selected_gender: st.warning("Please select a gender group from the sidebar ⚠️") st.stop() # SECTOR - NO CHOICE WARNING if not selected_sector: st.warning("Please select a sector from the sidebar ⚠️") st.stop() # COUNTRY - NO CHOICE WARNING if not selected_country: st.warning("Please select a country from the sidebar ⚠️") st.stop() ######################################################################################################################### # PART 4: DATA OVERVIEW with st.expander("GENERAL OVERVIEW OF DATA & DESCRIPTIVE STATISTICS (all data πŸ—ΊοΈ)"): st.header("Dataset Overview (all data)") st.markdown("data.head():") st.table(data.head()) st.header("Descriptive Statistics (all data)") st.markdown("data.describe().T") st.dataframe(data.describe().T) # PART 4.5: DESCRIPTIVE STATISTICS with st.expander("FILTERED DESCRIPTIVE STATISTICS (side-filtered data πŸ“Š)"): st.header("Descriptive Statistics (based on sidebar-filter)") st.markdown("filtered_data.describe().T") st.dataframe(filtered_data.describe().T) ######################################################################################################################### # PART 5: VISUALIZATIONS # Dropdown to select the type of visualization visualization_option = st.selectbox( "Select Visualization 🎨", ["Records of Loans Issued By Sector & Country (Top 10 Countries)", "KDE Plot - By Sector, Country & Total", "Box Plot - Country, Sector & Gender Group", # "Stacked Bar Chart - Mean Loan Amount by Gender, Sector & Country", REMOVED "Heatmap of Average Loan by Sector & Country", "Frequency of Funded Loans Over Time"]) if visualization_option == "Records of Loans Issued By Sector & Country (Top 10 Countries)": # Bar chart for Records of Loans Issued By Sector & Country (Top 10 Countries) chart = alt.Chart(filtered_data).mark_bar().encode( x='loan_amount', y='count()', color='sector', ).properties( title='Records of Loans Issued By Sector & Country (Top 10 Countries)' ) st.altair_chart(chart, use_container_width=True) # Bar chart for Countries only chart = alt.Chart(filtered_data).mark_bar().encode( x='loan_amount', y='count()', color='country', ).properties( title='Records of Loans Issued By Country Only (Top 10 Countries)' ) st.altair_chart(chart, use_container_width=True) elif visualization_option == "KDE Plot - By Sector, Country & Total": # KDE plot - SECTOR plt.figure(figsize=(10, 6)) sns.kdeplot(data=filtered_data, x='loan_amount', hue='sector', fill=True, palette='gist_rainbow') plt.xlabel('Loan Amount') plt.ylabel('Density') plt.title('KDE Plot of Loan Amount by Sector') st.pyplot(plt) # KDE plot - Country plt.figure(figsize=(10, 6)) sns.kdeplot(data=filtered_data, x='loan_amount', hue='country', fill=True, palette='gist_rainbow') plt.xlabel('Loan Amount') plt.ylabel('Density') plt.title('KDE Plot of Loan Amount by Country') st.pyplot(plt) # KDE plot - TOTAL plt.figure(figsize=(10, 6)) sns.kdeplot(data=filtered_data, x='loan_amount', fill=True, palette='gist_rainbow') plt.xlabel('Loan Amount') plt.ylabel('Density') plt.title('KDE Plot of Total Loan Amount') st.pyplot(plt) elif visualization_option == "Box Plot - Country, Sector & Gender Group": plt.figure(figsize=(12, 8)) sns.boxplot(data=filtered_data, x='sector', y='loan_amount', hue='gender_class', palette='gist_rainbow') plt.title('Box Plot of Loan Amounts By Sector and Gender Group') plt.xlabel('Sector') plt.ylabel('Loan Amount') plt.xticks(rotation=45) st.pyplot(plt) plt.figure(figsize=(12, 8)) sns.boxplot(data=filtered_data, x='sector', y='loan_amount', hue='country', palette='gist_rainbow') plt.title('Box Plot of Loan Amounts By Country (top 10) & Sector') plt.xlabel('Sector') plt.ylabel('Country') plt.xticks(rotation=45) st.pyplot(plt) elif visualization_option == "Stacked Bar Chart - Mean Loan Amount by Gender, Sector & Country": gender_sector_country = filtered_data.groupby(['sector', 'country', 'gender_class'])['loan_amount'].mean().unstack() gender_sector_country.plot(kind='barh', stacked=True, colormap='coolwarm', figsize=(14, 26)) plt.title('Stacked Bar Chart of Mean Loan Amount by Gender Sector & Country') plt.ylabel('Sector and Country') plt.xlabel('Mean Loan Amount') plt.xticks(rotation=0) st.pyplot(plt) gender_sector = filtered_data.groupby(['sector', 'gender_class'])['loan_amount'].mean().unstack() gender_sector.plot(kind='barh', stacked=True, colormap='coolwarm', figsize=(14, 8)) plt.title('GENDER & SECTOR ONLY: Stacked Bar Chart of Mean Loan Amount by Gender & Sector') plt.ylabel('Sector') plt.xlabel('Mean Loan Amount') plt.xticks(rotation=0) st.pyplot(plt) gender_country = filtered_data.groupby(['country', 'gender_class'])['loan_amount'].mean().unstack() gender_country.plot(kind='barh', stacked=True, colormap='coolwarm', figsize=(14, 8)) plt.title('GENDER & COUNTRY ONLY: Stacked Bar Chart of Mean Loan Amount by Gender & Country') plt.ylabel('Country') plt.xlabel('Mean Loan Amount') plt.xticks(rotation=0) st.pyplot(plt) elif visualization_option == "Heatmap of Average Loan by Sector & Country": heatmap_data = filtered_data.pivot_table(index='sector', columns='country', values='loan_amount', aggfunc='mean') plt.figure(figsize=(12, 8)) sns.heatmap(heatmap_data, cmap="coolwarm", annot=True, fmt=".1f") plt.title('Heatmap of Average Loan by Sector & Country') st.pyplot(plt) elif visualization_option == "Frequency of Funded Loans Over Time": time_data = filtered_data # CONVERTING time_data['funded_time'] = pd.to_datetime(time_data['funded_time']) # Set date column as index: time_data.set_index('funded_time', inplace=True) #Resample the data to a monthly frequency (can also be yearly, daily, etc.) funded_trend = time_data.resample('M').size() #plot the frequency of searches over time plt.figure(figsize=(12, 6)) plt.plot(funded_trend, label='Total Funded Loans', color='blue') #add labels and title plt.title('Frequency of Funded Loans Over Time') plt.xlabel('Date') plt.ylabel('Number of Funded Loans') plt.legend() plt.grid(True) st.pyplot(plt) # if st.button("AI Assitant, explain!!!"): # results = DDGS().chat("You're a smart data analyst. Provide and interpretate the results. Remember to check which Sectors, Gender groups, Country." + str((filtered_data.describe()))) # st.write(results) # PART BONUS - DEBUGGING with st.expander("DEBUGGING πŸ€“"): st.write("Selected sectors:", selected_sector) st.write("Selected countries:", selected_country) st.write("Filtered data:", filtered_data)