import math import os import argparse import json from tqdm import tqdm from dc.eval.model_utils import load_video import shortuuid from dc.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN from dc.conversation import conv_templates, SeparatorStyle from dc.model.builder import load_pretrained_model from dc.utils import disable_torch_init from dc.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path from PIL import Image import math import torch import time def llava_inference(video_frames, question, conv_mode, model, tokenizer, image_processor, image_sizes): if model.config.mm_use_im_start_end: qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + question else: qs = DEFAULT_IMAGE_TOKEN + '\n' + question conv = conv_templates[conv_mode].copy() conv.append_message(conv.roles[0], qs) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() image_tensor = process_images(video_frames, image_processor, model.config) with torch.inference_mode(): output_ids = model.generate( input_ids, images=image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True), image_sizes=image_sizes, do_sample=True if args.temperature > 0 else False, temperature=args.temperature, top_p=args.top_p, num_beams=args.num_beams, max_new_tokens=512, use_cache=True) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() return outputs def split_list(lst, n): """Split a list into n (roughly) equal-sized chunks""" chunk_size = math.ceil(len(lst) / n) # integer division return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] def get_chunk(lst, n, k): chunks = split_list(lst, n) return chunks[k] def parse_args(): """ Parse command-line arguments. """ parser = argparse.ArgumentParser() # Define the command-line arguments parser.add_argument('--video_dir', help='Directory containing video files.', required=True) parser.add_argument('--gt_file', help='Path to the ground truth file.', required=True) parser.add_argument('--output_dir', help='Directory to save the model results JSON.', required=True) parser.add_argument('--output_name', help='Name of the file for storing results JSON.', required=True) parser.add_argument("--model_name", type=str, required=True) parser.add_argument("--conv-mode", type=str, required=False, default='vicuna_v1') parser.add_argument("--num_chunks", type=int, default=1) parser.add_argument("--chunk_idx", type=int, default=0) parser.add_argument("--num_frames", type=int, default=100) parser.add_argument("--device", type=str, required=False, default='cuda:0') parser.add_argument("--model-base", type=str, default=None) parser.add_argument("--num_beams", type=int, default=1) parser.add_argument("--temperature", type=float, default=0.2) parser.add_argument("--top_p", type=float, default=None) parser.add_argument("--use_pool", action='store_true') return parser.parse_args() def run_inference(args): """ Run inference on a set of video files using the Dense Connector model. Args: args: Command-line arguments. """ disable_torch_init() model_path = os.path.expanduser(args.model_name) model_name = get_model_name_from_path(model_path) tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name, is_video=True, if_pool=args.use_pool) gt_contents = json.load(open(args.gt_file, "r")) gt_contents = get_chunk(gt_contents, args.num_chunks, args.chunk_idx) answers_file = os.path.join(args.output_dir, f"{args.output_name}.json") os.makedirs(args.output_dir, exist_ok=True) ans_file = open(answers_file, "w") # Create the output directory if it doesn't exist if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) output_list = [] # List to store the output results conv_mode = args.conv_mode video_formats = ['.mp4', '.avi', '.mov', '.mkv'] # Iterate over each sample in the ground truth file index = 0 for sample in tqdm(gt_contents): video_name = sample['video_name'] sample_set = sample question_1 = sample['Q1'] question_2 = sample['Q2'] # Load the video file for fmt in video_formats: # Added this line temp_path = os.path.join(args.video_dir, f"{video_name}{fmt}") if os.path.exists(temp_path): video_path = temp_path video_frames, sizes = load_video(video_path, num_frm=args.num_frames) # Run inference on the video for the first question and add the output to the list output_1 = llava_inference(video_frames, question_1, conv_mode, model, tokenizer, image_processor, sizes) sample_set['pred1'] = output_1 # Run inference on the video for the second question and add the output to the list output_2 = llava_inference(video_frames, question_2, conv_mode, model, tokenizer, image_processor, sizes) sample_set['pred2'] = output_2 output_list.append(sample_set) ans_file.write(json.dumps(sample_set) + "\n") index += 1 break ans_file.close() # Save the output list to a JSON file # with open(os.path.join(args.output_dir, f"{args.output_name}.json"), 'w') as file: # json.dump(output_list, file) if __name__ == "__main__": args = parse_args() run_inference(args)