SuperResolution / app.py
Hu
delete share=True
277674a
raw
history blame
1.56 kB
import numpy as np
import gradio as gr
import torch
import torch.nn as nn
import torch.nn.functional as F
from model import SRCNNModel, pred_SRCNN
from PIL import Image
title = "Super Resolution with CNN"
description = """
Your low resolution image will be reconstructed to high resolution with a scale of 2 with a convolutional neural network!
CNN output on the left, bicubic interpolation output on the right.
"""
article = "Check out the origianl [paper](https://arxiv.org/abs/1501.00092) proposed by Dong *et al*."
# load model
print("Loading SRCNN model...")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = SRCNNModel().to(device)
model.load_state_dict(torch.load('SRCNNmodel_trained.pt'))
model.eval()
print("SRCNN model loaded!")
def image_grid(imgs, rows, cols):
'''
imgs:list of PILImage
'''
assert len(imgs) == rows*cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols*w, rows*h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i%cols*w, i//cols*h))
return grid
def sepia(image_path):
# gradio open image as np array
image = Image.fromarray(image_path,mode='RGB')
out_final,image_bicubic,image = pred_SRCNN(model=model,image=image,device=device)
grid = image_grid([out_final,image_bicubic],1,2)
return grid
demo = gr.Interface(fn = sepia, inputs=gr.Image(shape=(200, 200)), outputs="image",title=title,description = description,article = article,examples=['LR_image.png','barbara.png'])
demo.launch()