import gradio as gr import numpy as np import pandas as pd import csv import librosa import tensorflow as tf #!gdown https://drive.google.com/uc?id=1hKQdsTZ35KQmNV9Zrqg-ksTLSmPapR53 model = tf.keras.models.load_model('TTM_model.h5') def config_audio(audio): print('enter2') header = 'ChromaSTFT RMS SpectralCentroid SpectralBandwidth Rolloff ZeroCrossingRate' for i in range(1, 21): header += f' mfcc{i}' header += ' label' header = header.split() print(1) file = open('predict_file.csv', 'w', newline='') with file: writer = csv.writer(file) writer.writerow(header) print(2) #taalfile = audio #print('stored in taalfile') y, sr = librosa.load(audio, mono=True, duration=30) print(3) rms = librosa.feature.rms(y=y) chroma = librosa.feature.chroma_stft(y=y, sr=sr) spec_centroid = librosa.feature.spectral_centroid(y=y, sr=sr) spec_bandwidth = librosa.feature.spectral_bandwidth(y=y, sr=sr) rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr) zcr = librosa.feature.zero_crossing_rate(y) mfcc = librosa.feature.mfcc(y=y, sr=sr) to_append = f' {np.mean(chroma)} {np.mean(rms)} {np.mean(spec_centroid)} {np.mean(spec_bandwidth)} {np.mean(rolloff)} {np.mean(zcr)} ' for e in mfcc: to_append += f' {np.mean(e)}' #to_append += f' {t}' file = open('predict_file.csv', 'a', newline='') with file: writer = csv.writer(file) writer.writerow(to_append.split()) predict_file = pd.read_csv("predict_file.csv") X_predict = predict_file.drop('label', axis=1) print('exit2') return X_predict def predict_audio(Input_Audio, Playable_Audio): audio=Input_Audio.name print('enter1') X_predict = config_audio(audio) taals = ['addhatrital','bhajani','dadra','deepchandi','ektal','jhaptal','rupak','trital'] pred = model.predict(X_predict).flatten() print('exit1') return {taals[i]: float(pred[i]) for i in range(7)} audio = gr.inputs.Audio(source="upload", optional=False) label = gr.outputs.Label() gr.Interface(predict_audio, ["file","audio"], outputs=label, description="").launch(debug=True)