import numpy as np import torch import torch.nn as nn import copy import re from transformers import T5Config, T5PreTrainedModel, T5EncoderModel, T5Tokenizer from transformers.models.t5.modeling_t5 import T5Stack from transformers.modeling_outputs import TokenClassifierOutput from transformers.utils.model_parallel_utils import assert_device_map, get_device_map from models.enm_adaptor_heads import ENMAdaptedAttentionClassifier, ENMAdaptedDirectClassifier, ENMAdaptedConvClassifier, ENMNoAdaptorClassifier from utils.lora_utils import LoRAConfig, modify_with_lora class T5EncoderForTokenClassification(T5PreTrainedModel): def __init__(self, config: T5Config, class_config): super().__init__(config) self.num_labels = class_config.num_labels self.config = config self.add_pearson_loss = class_config.add_pearson_loss self.add_sse_loss = class_config.add_sse_loss self.shared = nn.Embedding(config.vocab_size, config.d_model) encoder_config = copy.deepcopy(config) encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = T5Stack(encoder_config, self.shared) self.dropout = nn.Dropout(class_config.dropout_rate) if class_config.adaptor_architecture == 'attention': self.classifier = ENMAdaptedAttentionClassifier(config.hidden_size, class_config.num_labels, class_config.enm_embed_dim, class_config.enm_att_heads) #nn.Linear(config.hidden_size, class_config.num_labels) elif class_config.adaptor_architecture == 'direct': self.classifier = ENMAdaptedDirectClassifier(config.hidden_size, class_config.num_labels) elif class_config.adaptor_architecture == 'conv': self.classifier = ENMAdaptedConvClassifier(config.hidden_size, class_config.num_labels, class_config.kernel_size, class_config.enm_embed_dim, class_config.num_layers) elif class_config.adaptor_architecture == 'no-adaptor': self.classifier = ENMNoAdaptorClassifier(config.hidden_size, class_config.num_labels) else: raise ValueError('Only attention, direct, conv and no-adaptor architectures are supported for the adaptor.') # Initialize weights and apply final processing self.post_init() # Model parallel self.model_parallel = False self.device_map = None def parallelize(self, device_map=None): self.device_map = ( get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.encoder.block)) self.encoder.parallelize(self.device_map) self.classifier = self.classifier.to(self.encoder.first_device) self.model_parallel = True def deparallelize(self): self.encoder.deparallelize() self.encoder = self.encoder.to("cpu") self.model_parallel = False self.device_map = None torch.cuda.empty_cache() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.set_input_embeddings(new_embeddings) def get_encoder(self): return self.encoder def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def forward( self, enm_vals = None, input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict # import pdb; pdb.set_trace() outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) #TODO: check the enm_vals are padded properly and check that the sequence limit (in the transformer) is indeed 512 logits = self.classifier(sequence_output, enm_vals, attention_mask) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( #loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def PT5_classification_model(half_precision, class_config): # Load PT5 and tokenizer # possible to load the half preciion model (thanks to @pawel-rezo for pointing that out) if not half_precision: model = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_uniref50", local_files_only=True) tokenizer = T5Tokenizer.from_pretrained("Rostlab/prot_t5_xl_uniref50", local_files_only=True) elif half_precision and torch.cuda.is_available(): tokenizer = T5Tokenizer.from_pretrained('Rostlab/prot_t5_xl_half_uniref50-enc', do_lower_case=False, local_files_only=True) model = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_half_uniref50-enc", torch_dtype=torch.float16, local_files_only=True).to(torch.device('cuda')) else: raise ValueError('Half precision can be run on GPU only.') # Create new Classifier model with PT5 dimensions class_model=T5EncoderForTokenClassification(model.config,class_config) # Set encoder and embedding weights to checkpoint weights class_model.shared=model.shared class_model.encoder=model.encoder # Delete the checkpoint model model=class_model del class_model # Print number of trainable parameters model_parameters = filter(lambda p: p.requires_grad, model.parameters()) params = sum([np.prod(p.size()) for p in model_parameters]) print("ProtT5_Classfier\nTrainable Parameter: "+ str(params)) # Add model modification lora config = LoRAConfig('configs/lora_config.yaml') # Add LoRA layers model = modify_with_lora(model, config) # Freeze Embeddings and Encoder (except LoRA) for (param_name, param) in model.shared.named_parameters(): param.requires_grad = False for (param_name, param) in model.encoder.named_parameters(): param.requires_grad = False for (param_name, param) in model.named_parameters(): if re.fullmatch(config.trainable_param_names, param_name): param.requires_grad = True # Print trainable Parameter model_parameters = filter(lambda p: p.requires_grad, model.parameters()) params = sum([np.prod(p.size()) for p in model_parameters]) print("ProtT5_LoRA_Classfier\nTrainable Parameter: "+ str(params) + "\n") return model, tokenizer