import gradio as gr import os import datetime import pytz def current_time(): current = datetime.datetime.now(pytz.timezone('Asia/Shanghai')).strftime("%Y年-%m月-%d日 %H时:%M分:%S秒") return current print(f"[{current_time()}] 开始部署空间...") from pathlib import Path print(f"[{current_time()}] 日志:安装 - gsutil") os.system("pip install gsutil") print(f"[{current_time()}] 日志:Git - 克隆 Github 的 T5X 训练框架到当前目录") os.system("git clone --branch=main https://github.com/google-research/t5x") print(f"[{current_time()}] 日志:文件 - 移动 t5x 到当前目录并重命名为 t5x_tmp 并删除") os.system("mv t5x t5x_tmp; mv t5x_tmp/* .; rm -r t5x_tmp") print(f"[{current_time()}] 日志:编辑 - 替换 setup.py 内的文本“jax[tpu]”为“jax”") os.system("sed -i 's:jax\[tpu\]:jax:' setup.py") print(f"[{current_time()}] 日志:Python - 使用 pip 安装 当前目录内的 Python 包") os.system("python3 -m pip install -e .") print(f"[{current_time()}] 日志:Python - 更新 Python 包管理器 pip") os.system("python3 -m pip install --upgrade pip") # 安装 mt3 print(f"[{current_time()}] 日志:Git - 克隆 Github 的 MT3 模型到当前目录") os.system("git clone --branch=main https://github.com/magenta/mt3") print(f"[{current_time()}] 日志:文件 - 移动 mt3 到当前目录并重命名为 mt3_tmp 并删除") os.system("mv mt3 mt3_tmp; mv mt3_tmp/* .; rm -r mt3_tmp") print(f"[{current_time()}] 日志:Python - 使用 pip 安装 当前目录内的 Python 包") os.system("python3 -m pip install -e .") print(f"[{current_time()}] 日志:安装 - TensorFlow CPU") os.system("pip install tensorflow_cpu") # 复制检查点 print(f"[{current_time()}] 日志:gsutil - 复制 MT3 检查点到当前目录") os.system("gsutil -q -m cp -r gs://mt3/checkpoints .") # 复制 soundfont 文件(原始文件来自 https://sites.google.com/site/soundfonts4u) print(f"[{current_time()}] 日志:gsutil - 复制 SoundFont 文件到当前目录") os.system("gsutil -q -m cp gs://magentadata/soundfonts/SGM-v2.01-Sal-Guit-Bass-V1.3.sf2 .") #@title 导入和定义 print(f"[{current_time()}] 日志:导入 - 必要工具") import functools import numpy as np import tensorflow.compat.v2 as tf import functools import gin import jax import librosa import note_seq import seqio import t5 import t5x from mt3 import metrics_utils from mt3 import models from mt3 import network from mt3 import note_sequences from mt3 import preprocessors from mt3 import spectrograms from mt3 import vocabularies import nest_asyncio nest_asyncio.apply() SAMPLE_RATE = 16000 SF2_PATH = 'SGM-v2.01-Sal-Guit-Bass-V1.3.sf2' def upload_audio(audio, sample_rate): return note_seq.audio_io.wav_data_to_samples_librosa( audio, sample_rate=sample_rate) print(f"[{current_time()}] 日志:开始包装模型...") class InferenceModel(object): """音乐转录的 T5X 模型包装器。""" def __init__(self, checkpoint_path, model_type='mt3'): # 模型常量。 if model_type == 'ismir2021': num_velocity_bins = 127 self.encoding_spec = note_sequences.NoteEncodingSpec self.inputs_length = 512 elif model_type == 'mt3': num_velocity_bins = 1 self.encoding_spec = note_sequences.NoteEncodingWithTiesSpec self.inputs_length = 256 else: raise ValueError('unknown model_type: %s' % model_type) gin_files = ['/home/user/app/mt3/gin/model.gin', '/home/user/app/mt3/gin/mt3.gin'] self.batch_size = 8 self.outputs_length = 1024 self.sequence_length = {'inputs': self.inputs_length, 'targets': self.outputs_length} self.partitioner = t5x.partitioning.PjitPartitioner( model_parallel_submesh=None, num_partitions=1) # 构建编解码器和词汇表。 print(f"[{current_time()}] 日志:构建编解码器") self.spectrogram_config = spectrograms.SpectrogramConfig() self.codec = vocabularies.build_codec( vocab_config=vocabularies.VocabularyConfig( num_velocity_bins=num_velocity_bins)) self.vocabulary = vocabularies.vocabulary_from_codec(self.codec) self.output_features = { 'inputs': seqio.ContinuousFeature(dtype=tf.float32, rank=2), 'targets': seqio.Feature(vocabulary=self.vocabulary), } # 创建 T5X 模型。 print(f"[{current_time()}] 日志:创建 T5X 模型") self._parse_gin(gin_files) self.model = self._load_model() # 从检查点中恢复。 print(f"[{current_time()}] 日志:恢复模型检查点") self.restore_from_checkpoint(checkpoint_path) @property def input_shapes(self): return { 'encoder_input_tokens': (self.batch_size, self.inputs_length), 'decoder_input_tokens': (self.batch_size, self.outputs_length) } def _parse_gin(self, gin_files): """解析用于训练模型的 gin 文件。""" print(f"[{current_time()}] 日志:解析 gin 文件") gin_bindings = [ 'from __gin__ import dynamic_registration', 'from mt3 import vocabularies', 'VOCAB_CONFIG=@vocabularies.VocabularyConfig()', 'vocabularies.VocabularyConfig.num_velocity_bins=%NUM_VELOCITY_BINS' ] with gin.unlock_config(): gin.parse_config_files_and_bindings( gin_files, gin_bindings, finalize_config=False) def _load_model(self): """在解析训练 gin 配置后加载 T5X `Model`。""" print(f"[{current_time()}] 日志:加载 T5X 模型") model_config = gin.get_configurable(network.T5Config)() module = network.Transformer(config=model_config) return models.ContinuousInputsEncoderDecoderModel( module=module, input_vocabulary=self.output_features['inputs'].vocabulary, output_vocabulary=self.output_features['targets'].vocabulary, optimizer_def=t5x.adafactor.Adafactor(decay_rate=0.8, step_offset=0), input_depth=spectrograms.input_depth(self.spectrogram_config)) def restore_from_checkpoint(self, checkpoint_path): """从检查点中恢复训练状态,重置 self._predict_fn()。""" print(f"[{current_time()}] 日志:从检查点恢复训练状态") train_state_initializer = t5x.utils.TrainStateInitializer( optimizer_def=self.model.optimizer_def, init_fn=self.model.get_initial_variables, input_shapes=self.input_shapes, partitioner=self.partitioner) restore_checkpoint_cfg = t5x.utils.RestoreCheckpointConfig( path=checkpoint_path, mode='specific', dtype='float32') train_state_axes = train_state_initializer.train_state_axes self._predict_fn = self._get_predict_fn(train_state_axes) self._train_state = train_state_initializer.from_checkpoint_or_scratch( [restore_checkpoint_cfg], init_rng=jax.random.PRNGKey(0)) @functools.lru_cache() def _get_predict_fn(self, train_state_axes): """生成一个分区的预测函数用于解码。""" print(f"[{current_time()}] 日志:生成用于解码的预测函数") def partial_predict_fn(params, batch, decode_rng): return self.model.predict_batch_with_aux( params, batch, decoder_params={'decode_rng': None}) return self.partitioner.partition( partial_predict_fn, in_axis_resources=( train_state_axes.params, t5x.partitioning.PartitionSpec('data',), None), out_axis_resources=t5x.partitioning.PartitionSpec('data',) ) def predict_tokens(self, batch, seed=0): """从预处理的数据集批次中预测 tokens。""" print(f"[{current_time()}] 运行:从预处理数据集中预测音符序列") prediction, _ = self._predict_fn( self._train_state.params, batch, jax.random.PRNGKey(seed)) return self.vocabulary.decode_tf(prediction).numpy() def __call__(self, audio): """从音频样本推断出音符序列。 参数: audio:16kHz 的单个音频样本的 1 维 numpy 数组。 返回: 转录音频的音符序列。 """ print(f"[{current_time()}] 运行:从音频样本中推断音符序列") ds = self.audio_to_dataset(audio) ds = self.preprocess(ds) model_ds = self.model.FEATURE_CONVERTER_CLS(pack=False)( ds, task_feature_lengths=self.sequence_length) model_ds = model_ds.batch(self.batch_size) inferences = (tokens for batch in model_ds.as_numpy_iterator() for tokens in self.predict_tokens(batch)) predictions = [] for example, tokens in zip(ds.as_numpy_iterator(), inferences): predictions.append(self.postprocess(tokens, example)) result = metrics_utils.event_predictions_to_ns( predictions, codec=self.codec, encoding_spec=self.encoding_spec) return result['est_ns'] def audio_to_dataset(self, audio): """从输入音频创建一个包含频谱图的 TF Dataset。""" print(f"[{current_time()}] 运行:从音频创建包含频谱图的 TF Dataset") frames, frame_times = self._audio_to_frames(audio) return tf.data.Dataset.from_tensors({ 'inputs': frames, 'input_times': frame_times, }) def _audio_to_frames(self, audio): """从音频计算频谱图帧。""" print(f"[{current_time()}] 运行:从音频计算频谱图帧") frame_size = self.spectrogram_config.hop_width padding = [0, frame_size提示 - len(audio) % frame_size] audio = np.pad(audio, padding, mode='constant') frames = spectrograms.split_audio(audio, self.spectrogram_config) num_frames = len(audio) // frame_size times = np.arange(num_frames) / self.spectrogram_config.frames_per_second return frames, times def preprocess(self, ds): pp_chain = [ functools.partial( t5.data.preprocessors.split_tokens_to_inputs_length, sequence_length=self.sequence_length, output_features=self.output_features, feature_key='inputs', additional_feature_keys=['input_times']), # 在训练期间进行缓存。 preprocessors.add_dummy_targets, functools.partial( preprocessors.compute_spectrograms, spectrogram_config=self.spectrogram_config) ] for pp in pp_chain: ds = pp(ds) return ds def postprocess(self, tokens, example): tokens = self._trim_eos(tokens) start_time = example['input_times'][0] # 向下取整到最接近的符号化时间步。 start_time -= start_time % (1 / self.codec.steps_per_second) return { 'est_tokens': tokens, 'start_time': start_time, # 内部 MT3 代码期望原始输入,这里不使用。 'raw_inputs': [] } @staticmethod def _trim_eos(tokens): tokens = np.array(tokens, np.int32) if vocabularies.DECODED_EOS_ID in tokens: tokens = tokens[:np.argmax(tokens == vocabularies.DECODED_EOS_ID)] return tokens inference_model = InferenceModel('/home/user/app/checkpoints/mt3/', 'mt3') def inference(audio): filename = os.path.basename(audio) # 获取输入文件的文件名 print(f"[{current_time()}] 运行:输入文件: {filename}") with open(audio, 'rb') as fd: contents = fd.read() audio = upload_audio(contents,sample_rate=16000) est_ns = inference_model(audio) note_seq.sequence_proto_to_midi_file(est_ns, './transcribed.mid') return './transcribed.mid' title = "MT3" description = "MT3:多任务多音轨音乐转录的 Gradio 演示。要使用它,只需上传音频文件,或点击示例以查看效果。更多信息请参阅下面的链接。" article = "
出错了?试试把文件转换为MP3后再上传吧~
" examples=[['canon.flac'], ['download.wav']] gr.Interface( inference, gr.inputs.Audio(type="filepath", label="输入"), [gr.outputs.File(label="输出")], title=title, description=description, article=article, examples=examples, allow_flagging=False, allow_screenshot=False, enable_queue=True ).launch()