from fastapi import FastAPI from pydantic import BaseModel from model.model import predict_pipeline from model.model import __version__ as model_version from transformers import AutoTokenizer, AutoModelForSequenceClassification from transformers import TextClassificationPipeline app = FastAPI() class TextIn(BaseModel): text: str class PredictionOut(BaseModel): language: str class TopicClassificationOut(BaseModel): result: str @app.get("/") def home(): return {"health_check": "OK", "model_version": model_version} @app.post("/predict", response_model=PredictionOut) def predict(payload: TextIn): language = predict_pipeline(payload.text) return {"language": language} @app.post("/TopicClassification", response_model=TopicClassificationOut) def TopicClassification(payload: TextIn): model_name = 'lincoln/flaubert-mlsum-topic-classification' loaded_tokenizer = AutoTokenizer.from_pretrained(model_name) loaded_model = AutoModelForSequenceClassification.from_pretrained(model_name) nlp = TextClassificationPipeline(model=loaded_model, tokenizer=loaded_tokenizer) # print(payload.text) # text = re.sub(r'[!@#$(),\n"%^*?\:;~`0-9]', " ", payload.text) text = "Le Bayern Munich prend la grenadine." text = re.sub(r"[[]]", " ", text) text = text.lower() result = nlp(text, truncation=True) return {"result": result} @app.get("/whichsocial/") def whichsocial(request): socialnetwork = 'TikTok' userprofile = 'me' return {"request"=request, "social_network": socialnetwork, "user_profile": userprofile}