""" Vision Transformer (ViT) in PyTorch Hacked together by / Copyright 2020 Ross Wightman """ import torch import torch.nn as nn from functools import partial from einops import rearrange from ViT.helpers import load_pretrained from ViT.weight_init import trunc_normal_ from ViT.layer_helpers import to_2tuple def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'first_conv': 'patch_embed.proj', 'classifier': 'head', **kwargs } default_cfgs = { # patch models 'vit_small_patch16_224': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth', ), 'vit_base_patch16_224': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), ), 'vit_large_patch16_224': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), # deit models (FB weights) 'deit_tiny_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth'), 'deit_small_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth'), 'deit_base_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth', ), 'deit_base_patch16_384': _cfg( url='', # no weights yet input_size=(3, 384, 384)), } class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False,attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.attn_gradients = None self.attention_map = None def save_attn_gradients(self, attn_gradients): self.attn_gradients = attn_gradients def get_attn_gradients(self): return self.attn_gradients def save_attention_map(self, attention_map): self.attention_map = attention_map def get_attention_map(self): return self.attention_map def forward(self, x, register_hook=False, return_attentions=False): b, n, _, h = *x.shape, self.num_heads qkv = self.qkv(x) q, k, v = rearrange(qkv, 'b n (qkv h d) -> qkv b h n d', qkv = 3, h = h) dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale attn = dots.softmax(dim=-1) attn = self.attn_drop(attn) out = torch.einsum('bhij,bhjd->bhid', attn, v) self.save_attention_map(attn) if register_hook: attn.register_hook(self.save_attn_gradients) out = rearrange(out, 'b h n d -> b n (h d)') out = self.proj(out) out = self.proj_drop(out) if not return_attentions: return out else: return out, attn class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x, register_hook=False, return_attentions=False): if not return_attentions: x = x + self.attn(self.norm1(x), register_hook=register_hook) else: attn_res, attn = self.attn(self.norm1(x), register_hook=register_hook, return_attentions=True) x = x + attn_res x = x + self.mlp(self.norm2(x)) if not return_attentions: return x else: return x, attn class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): B, C, H, W = x.shape # FIXME look at relaxing size constraints assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) return x class VisionTransformer(nn.Module): """ Vision Transformer """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, drop_rate=0., attn_drop_rate=0., norm_layer=nn.LayerNorm): super().__init__() self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer) for i in range(depth)]) self.norm = norm_layer(embed_dim) # Classifier head self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def forward(self, x, register_hook=False, return_attentions=False): if return_attentions: attentions = [] B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) x = x + self.pos_embed x = self.pos_drop(x) for blk in self.blocks: if not return_attentions: x = blk(x, register_hook=register_hook) else: x, attn = blk(x, register_hook=register_hook, return_attentions=True) attentions.append(attn) x = self.norm(x) x = x[:, 0] x = self.head(x) if not return_attentions: return x else: return x, torch.cat(attentions).unsqueeze(0) def _conv_filter(state_dict, patch_size=16): """ convert patch embedding weight from manual patchify + linear proj to conv""" out_dict = {} for k, v in state_dict.items(): if 'patch_embed.proj.weight' in k: v = v.reshape((v.shape[0], 3, patch_size, patch_size)) out_dict[k] = v return out_dict def vit_base_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = default_cfgs['vit_base_patch16_224'] if pretrained: load_pretrained( model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=_conv_filter) return model def vit_base_finetuned_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = default_cfgs['vit_base_finetuned_patch16_224'] if pretrained: load_pretrained( model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=_conv_filter) return model def vit_large_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = default_cfgs['vit_large_patch16_224'] if pretrained: load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3)) return model def deit_tiny_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = default_cfgs['deit_tiny_patch16_224'] if pretrained: load_pretrained( model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=lambda x: x['model']) return model def deit_small_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = default_cfgs['deit_small_patch16_224'] if pretrained: load_pretrained( model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=lambda x: x['model']) return model def deit_base_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = default_cfgs['deit_base_patch16_224'] if pretrained: load_pretrained( model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=lambda x: x['model']) return model