Spaces:
Running
on
Zero
Running
on
Zero
| import torch.nn.functional as F | |
| def compute_tensor_iu(seg, gt): | |
| intersection = (seg & gt).float().sum() | |
| union = (seg | gt).float().sum() | |
| return intersection, union | |
| def compute_tensor_iou(seg, gt): | |
| intersection, union = compute_tensor_iu(seg, gt) | |
| iou = (intersection + 1e-6) / (union + 1e-6) | |
| return iou | |
| # STM | |
| def pad_divide_by(in_img, d): | |
| h, w = in_img.shape[-2:] | |
| if h % d > 0: | |
| new_h = h + d - h % d | |
| else: | |
| new_h = h | |
| if w % d > 0: | |
| new_w = w + d - w % d | |
| else: | |
| new_w = w | |
| lh, uh = int((new_h-h) / 2), int(new_h-h) - int((new_h-h) / 2) | |
| lw, uw = int((new_w-w) / 2), int(new_w-w) - int((new_w-w) / 2) | |
| pad_array = (int(lw), int(uw), int(lh), int(uh)) | |
| out = F.pad(in_img, pad_array) | |
| return out, pad_array | |
| def unpad(img, pad): | |
| if len(img.shape) == 4: | |
| if pad[2]+pad[3] > 0: | |
| img = img[:,:,pad[2]:-pad[3],:] | |
| if pad[0]+pad[1] > 0: | |
| img = img[:,:,:,pad[0]:-pad[1]] | |
| elif len(img.shape) == 3: | |
| if pad[2]+pad[3] > 0: | |
| img = img[:,pad[2]:-pad[3],:] | |
| if pad[0]+pad[1] > 0: | |
| img = img[:,:,pad[0]:-pad[1]] | |
| else: | |
| raise NotImplementedError | |
| return img |