Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,912 Bytes
59b2a81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 |
import sys
import argparse
import copy
import os, shutil
import imageio
import cv2
from PIL import Image, ImageDraw
import os.path as osp
import random
import numpy as np
import torch.multiprocessing as mp
from multiprocessing import set_start_method
import math, time, gc
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
from segment_anything import SamAutomaticMaskGenerator, SamPredictor, sam_model_registry
# Import files from the local path
root_path = os.path.abspath('.')
sys.path.append(root_path)
from config.flowformer_config import get_cfg
from flowformer_code.utils import flow_viz, frame_utils
from flowformer_code.utils.utils import InputPadder
from flowformer_code.FlowFormer import build_flowformer
TRAIN_SIZE = [432, 960]
def show_anns(anns):
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
ax = plt.gca()
ax.set_autoscale_on(True)
img = np.ones((sorted_anns[0]['segmentation'].shape[0], sorted_anns[0]['segmentation'].shape[1], 4))
img[:,:,3] = 0
for ann in sorted_anns:
m = ann['segmentation']
color_mask = np.concatenate([np.random.random(3), [0.35]])
img[m] = color_mask
return img*255
def show_mask(mask, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
return mask_image * 255
def compute_grid_indices(image_shape, patch_size=TRAIN_SIZE, min_overlap=20):
if min_overlap >= TRAIN_SIZE[0] or min_overlap >= TRAIN_SIZE[1]:
raise ValueError(
f"Overlap should be less than size of patch (got {min_overlap}"
f"for patch size {patch_size}).")
if image_shape[0] == TRAIN_SIZE[0]:
hs = list(range(0, image_shape[0], TRAIN_SIZE[0]))
else:
hs = list(range(0, image_shape[0], TRAIN_SIZE[0] - min_overlap))
if image_shape[1] == TRAIN_SIZE[1]:
ws = list(range(0, image_shape[1], TRAIN_SIZE[1]))
else:
ws = list(range(0, image_shape[1], TRAIN_SIZE[1] - min_overlap))
# Make sure the final patch is flush with the image boundary
hs[-1] = image_shape[0] - patch_size[0]
ws[-1] = image_shape[1] - patch_size[1]
return [(h, w) for h in hs for w in ws]
def compute_flow(model, image1, image2, weights=None):
print(f"computing flow...")
image_size = image1.shape[1:]
image1, image2 = image1[None].cuda(), image2[None].cuda()
hws = compute_grid_indices(image_size)
if weights is None: # no tile
padder = InputPadder(image1.shape)
image1, image2 = padder.pad(image1, image2)
flow_pre, _ = model(image1, image2)
flow_pre = padder.unpad(flow_pre)
flow = flow_pre[0].permute(1, 2, 0).cpu().numpy()
else: # tile
flows = 0
flow_count = 0
for idx, (h, w) in enumerate(hws):
image1_tile = image1[:, :, h:h+TRAIN_SIZE[0], w:w+TRAIN_SIZE[1]]
image2_tile = image2[:, :, h:h+TRAIN_SIZE[0], w:w+TRAIN_SIZE[1]]
flow_pre, _ = model(image1_tile, image2_tile)
padding = (w, image_size[1]-w-TRAIN_SIZE[1], h, image_size[0]-h-TRAIN_SIZE[0], 0, 0)
flows += F.pad(flow_pre * weights[idx], padding)
flow_count += F.pad(weights[idx], padding)
flow_pre = flows / flow_count
flow = flow_pre[0].permute(1, 2, 0).cpu().numpy()
return flow
def compute_adaptive_image_size(image_size):
target_size = TRAIN_SIZE
scale0 = target_size[0] / image_size[0]
scale1 = target_size[1] / image_size[1]
if scale0 > scale1:
scale = scale0
else:
scale = scale1
image_size = (int(image_size[1] * scale), int(image_size[0] * scale))
return image_size
def prepare_image(viz_root_dir, fn1, fn2, keep_size):
print(f"preparing image...")
image1 = frame_utils.read_gen(fn1)
image2 = frame_utils.read_gen(fn2)
image1 = np.array(image1).astype(np.uint8)[..., :3]
image2 = np.array(image2).astype(np.uint8)[..., :3]
if not keep_size:
dsize = compute_adaptive_image_size(image1.shape[0:2])
image1 = cv2.resize(image1, dsize=dsize, interpolation=cv2.INTER_CUBIC)
image2 = cv2.resize(image2, dsize=dsize, interpolation=cv2.INTER_CUBIC)
image1 = torch.from_numpy(image1).permute(2, 0, 1).float()
image2 = torch.from_numpy(image2).permute(2, 0, 1).float()
dirname = osp.dirname(fn1)
filename = osp.splitext(osp.basename(fn1))[0]
viz_dir = osp.join(viz_root_dir, dirname)
# if not osp.exists(viz_dir):
# os.makedirs(viz_dir)
viz_fn = osp.join(viz_dir, filename + '.png')
return image1, image2, viz_fn
def build_model():
print(f"building model...")
cfg = get_cfg()
model = torch.nn.DataParallel(build_flowformer(cfg))
model.load_state_dict(torch.load(cfg.model))
model.cuda()
model.eval()
return model
def filter_uv(flow, threshold_factor = 0.2):
u = flow[:,:,0]
v = flow[:,:,1]
rad = np.sqrt(np.square(u) + np.square(v))
rad_max = np.max(rad)
threshold = threshold_factor * rad_max
flow[:,:,0][rad < threshold] = 0
flow[:,:,1][rad < threshold] = 0
return flow
def visualize_traj(base_img, traj_path, connect_points = True):
target_vertical, target_horizontal = traj_path[-1]
if connect_points and len(traj_path) > 1:
# Draw a line to connect two point to show motion direction
start_coordinate = (traj_path[-2][1], traj_path[-2][0])
end_coordinate = (traj_path[-1][1], traj_path[-1][0])
pil_img = Image.fromarray(base_img)
# Draw the line
color = 'red'
draw = ImageDraw.Draw(pil_img)
draw.line([start_coordinate, end_coordinate], fill = color, width = 3)
base_img = np.array(pil_img)
# Draw a green dot only for the start point
if len(traj_path) == 1:
dot_range = 3
for i in range(-1*dot_range, dot_range+1):
for j in range(-1*dot_range, dot_range+1):
dil_vertical, dil_horizontal = target_vertical + i, target_horizontal + j
if (0 <= dil_vertical and dil_vertical < base_img.shape[0]) and (0 <= dil_horizontal and dil_horizontal < base_img.shape[1]):
base_img[dil_vertical][dil_horizontal] = [0, 128, 0]
else:
print("The traj is out of boundary!!!!!!!!!!!!!!!!!!!!! and we won't consider it") # 现在
return (False, base_img)
return (True, base_img)
def calculate_flow(viz_root_dir, store_dir, img_pairs, optical_flow_model, sam_predictor, SAM_positive_sample_num, SAM_negative_sample_num, mask_generator, traj_visualization, keep_size, verbose=False):
# Trajectory prepare
traj_path = [] # It collects all points traversed in a temporal order
is_hard_to_track = False # If this is True, it means that, we have a time in tracking hard to find dx and dy movement. Under this circumstance, we are not very recommended to use it
hard_track_idxs = set()
traj_image_lists = []
# Iterate all image pairs
for idx, img_pair in enumerate(img_pairs):
fn1, fn2 = img_pair
print(f"processing {fn1}, {fn2}...")
image1, image2, viz_fn = prepare_image(viz_root_dir, fn1, fn2, keep_size) # Be very careful, image1 and image2 may be different resolution shape if keep_size is False
# Generate the optical flow and filter those that is small motion
flow_uv = filter_uv(compute_flow(optical_flow_model, image1, image2, None))
# if verbose:
# Store the visualization of flow_uv
# flow_img = flow_viz.flow_to_image(flow_uv)
# cv2.imwrite("optical_flow_" + str(idx+1) + ".png", flow_img[:, :, [2,1,0]])
if idx == 0:
# We will store the first image to memory for further visualization purpose
# Base img
# base_img = np.uint8(np.transpose(image1.numpy(), (1,2,0)))
# SAM figure
# sam_all = mask_generator.generate(image1)
# base_img = show_anns(sam_all)
# base_img = np.transpose(base_img, (1,2,0))
# Plain white image
base_img = np.zeros(np.transpose(image1.numpy(), (1,2,0)).shape, dtype=np.uint8)
base_img.fill(255)
# Extract moving points (positive point)
positive_point_cords = []
nonzeros = np.nonzero(flow_uv) # [(vertical), (horizontal)]
if len(nonzeros[0]) < SAM_positive_sample_num:
# We require the number of points to be more than SAM_positive_sample_num
return False
positive_orders = np.random.choice(len(nonzeros[0]), SAM_positive_sample_num, replace=False) # we have randomly select instead of use all in the sam_predictor prediction
for i in range(len(nonzeros[0])):
if i in positive_orders:
positive_point_cords.append([nonzeros[1][i], nonzeros[0][i]]) # 根据document来看,这个就应该是先horizontal再vertical,也就是这个顺序
positive_point_cords = np.array(positive_point_cords)
positive_point_labels = np.ones(len(positive_point_cords))
# Define negative sample (outside the optical flow choice)
if SAM_negative_sample_num != 0:
skip_prob = 2 * SAM_negative_sample_num / (flow_uv.shape[0]*flow_uv.shape[1] - len(nonzeros[0]))
negative_point_cords = []
for i in range(flow_uv.shape[0]):
for j in range(flow_uv.shape[1]):
if flow_uv[i][j][0] == 0 and flow_uv[i][j][1] == 0: # 0 means the no motion zone and we have already filter low motion as zero before
if random.random() < skip_prob:
negative_point_cords.append([j, i]) # 根据document来看,这个就应该是先horizontal再vertical,也就是这个顺序
negative_point_cords = np.array(negative_point_cords) # [:SAM_negative_sample_num]
negative_point_labels = np.zeros(len(negative_point_cords)) # Make sure that it is less than / equals to SAM_negative_sample_num quantity
################## Use SAM to filter out what we need (& use negative points) ##################
if idx == 0: # Only consider the first frame now.
# With sample coordinate
sam_predictor.set_image(np.uint8(np.transpose(image1.numpy(), (1,2,0))))
if SAM_negative_sample_num != 0 and len(negative_point_cords) != 0:
all_point_cords = np.concatenate((positive_point_cords, negative_point_cords), axis=0)
all_point_labels = np.concatenate((positive_point_labels, negative_point_labels), axis=0)
else:
all_point_cords = positive_point_cords
all_point_labels = positive_point_labels
masks, scores, logits = sam_predictor.predict(
point_coords=all_point_cords,
point_labels=all_point_labels,
multimask_output=False,
)
mask = masks[0] # TODO: 一定要确定我们这里选择了最大的mask,而没有考虑的第二大和其他的, 这里可能有bug,我们默认了第一个就是最大的mask
# if verbose:
# cv2.imwrite("mask_"+str(idx+1)+".png", (np.uint8(mask)*255))
# annotated_img = show_mask(mask)
# cv2.imwrite("annotated.png", annotated_img)
################## Choose the one we need as the reference for the future tracking ##################
# Choose a random point in the mask
target_zone = np.nonzero(mask) # [(vertical), (horizontal)]
target_zone = [(target_zone[0][i], target_zone[1][i]) for i in range(len(target_zone[0]))] # Now, the sturcture is [(vertical, horizontal), ...]
repeat_time = 0
loop2find = True
while loop2find:
loop2find = False
start_point = target_zone[np.random.choice(len(target_zone), 1, replace=False)[0]]
start_vertical, start_horizontal = start_point
repeat_time += 1
if repeat_time == 100:
# In some minor case, it may have infinite loop, so we need to manually break if it is looping
print("We are still hard to find a optimal first point, but we cannot let it loop")
break
# Try to choose a start_point that is more centralized (Not close to the border)
fast_break = False
for i in range(-15, 15):
for j in range(-15, 15):
dil_vertical, dil_horizontal = start_vertical + i, start_horizontal + j
if (0 <= dil_vertical and dil_vertical < mask.shape[0]) and (0 <= dil_horizontal and dil_horizontal < mask.shape[1]):
if mask[dil_vertical][dil_horizontal] == 0:
print("We need to change to a new position for the start p Since this one is close to the border of the object...........")
loop2find = True
fast_break = True
break
else:
# We won't want to consider those that is close to the boundary
print("We need to change to a new position Since this one is close to the border of the image...........")
loop2find = True
fast_break = True
break
if fast_break:
break
traj_path.append(start_point)
status, base_img = visualize_traj(base_img, traj_path)
if status == False: # If the traj is False, we won't consider it anymore.
file = open("log.txt", "a")
file.write("Invalid start point\n")
return False
# Read from the last one in traj
ref_vertical, ref_horizontal = traj_path[-1][0], traj_path[-1][1]
# Get the average motion vector for point surrounding (8+1 directions) the ref_point; This is because this is the most accurate statistics
horizon_lists, vertical_lists = [], []
start_range, end_range = -5, 5
# Calculate the average motion based on surrounding motion
search_times = 0
while len(horizon_lists) == 0: # If we cannot find a direction, we use average value inside this mask, but we will flag it.
search_times += 1
if search_times > 1:
print("This is hard to track!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! and we have tracked " + str(search_times) + " times")
# TODO: 如果out of boundary那种,search times到了8-10次的就砍掉那后面frame吧,这种非常inaccurate了, 你也可以retrack一个新的点,但是没有什么意义,看整体数量来定吧
is_hard_to_track = True
hard_track_idxs.add(idx)
if abs(start_range) >= flow_uv.shape[0]//2:
file = open("log.txt", "a")
file.write("This folder has search all space but didn't find any place to track optical flow\n")
return False # If we have already search for the whole graph but didn't find anything to track, we discard this sample
# Search for a larger space which is nearby 我觉得扩大搜索范围应该是最稳定的选择吧
for i in range(start_range, end_range):
for j in range(start_range, end_range):
target_vertical, target_horizontal = ref_vertical + i, ref_horizontal + j
if 0 <= target_vertical and target_vertical < flow_uv.shape[0] and 0 <= target_horizontal and target_horizontal < flow_uv.shape[1]:
if flow_uv[target_vertical, target_horizontal, 0] == 0 or flow_uv[target_vertical, target_horizontal, 1] == 0:
continue # Ignore zero vector to ensure only calculate moving position
horizon_lists.append(flow_uv[target_vertical, target_horizontal, 0]) # Horizontal motion strength
vertical_lists.append(flow_uv[target_vertical, target_horizontal, 1]) # Vertical motion strength
# If there isn't any to search, we kepp on a larger space
start_range -= 10
end_range += 10
average_dx = sum(horizon_lists)/len(horizon_lists)
average_dy = sum(vertical_lists)/len(vertical_lists)
print("average movement is ", (average_dx, average_dy))
traj_path.append(( int(traj_path[-1][0] + average_dy), int(traj_path[-1][1] + average_dx))) # Append the motion in independent order
print(traj_path)
##################### Visualize the trajectory path (Debug Purpose) #####################
status, base_img = visualize_traj(base_img, traj_path)
if status == False: # If the traj is False, we won't consider it anymore.
return False
cv2.imwrite(os.path.join(store_dir, "traj_path.png"), cv2.cvtColor(base_img, cv2.COLOR_BGR2RGB))
if traj_visualization:
status, single_traj_img = visualize_traj(np.uint8(np.transpose(image1.numpy(), (1,2,0))), traj_path[:-1], connect_points=False)
if status == False: # If the traj is False, we won't consider it anymore.
return False
traj_write_path = os.path.join(store_dir, "traj_"+str(idx)+".png")
# cv2.imwrite(traj_write_path, cv2.cvtColor(single_traj_img, cv2.COLOR_BGR2RGB))
traj_image_lists.append(traj_write_path)
# if traj_visualization:
# images = []
# for filename in traj_image_lists:
# images.append(imageio.imread(filename))
# # os.remove(filename) # Remove when used
# imageio.mimsave(os.path.join(store_dir, 'traj_motion.gif'), images, duration=0.05)
# TODO: 可以如果hard to track,就aggressivly多试即便,我们根据这个hard_track_idxs的长度来粗略判断哪个最好,三次里面选最好的
if is_hard_to_track:
if len(hard_track_idxs) >= len(img_pairs)//3: # If more than half of the traj is hard to track, we need to consider discard this one
file = open("log.txt", "a")
file.write("we have a lot of times hard to find dx and dy movement. Under this circumstance, we are not very recommended to use the track\n")
return False
# Write a file store all position for further utilization
txt_path = os.path.join(store_dir, "traj_data.txt")
if os.path.exists(txt_path):
os.remove(txt_path)
file = open(txt_path, "a")
for traj in traj_path:
file.write(str(traj[0]) + " " + str(traj[1]) + "\n")
# Save in numpy information
# with open(os.path.join(store_dir, 'traj_data.npy'), 'wb') as f:
# np.save(f, flow_uv)
print("We write ", traj_path)
return True
def manage_seq_range(input_dir, store_dir, total_frame_needed):
lists = os.listdir(input_dir)
lists = lists[2:-2]
num_frames_input = len(lists)
if num_frames_input < total_frame_needed:
print("The number of frames is too short for constructing the sequnece length needed")
return False
division_factor = num_frames_input // total_frame_needed
remain_frame = num_frames_input % total_frame_needed
gaps = [division_factor for _ in range(total_frame_needed)]
for idx in range(remain_frame):
gaps[idx] += 1
cur_idx = 2
for global_idx, gap in enumerate(gaps):
source_path = os.path.join(input_dir, "im_"+str(cur_idx)+".jpg")
destination_path = os.path.join(store_dir, "im_"+str(global_idx)+".jpg")
shutil.copyfile(source_path, destination_path)
cur_idx += gap
return True
def generate_pairs(dirname, start_idx, end_idx):
img_pairs = []
for idx in range(start_idx, end_idx):
img1 = osp.join(dirname, f'im_{idx}.jpg')
img2 = osp.join(dirname, f'im_{idx+1}.jpg')
# img1 = f'{idx:06}.png'
# img2 = f'{idx+1:06}.png'
img_pairs.append((img1, img2))
return img_pairs
def process_partial_request(request_list, num_frames, traj_visualization, viz_root_dir):
# Init the optical flow model
optical_flow_model = build_model()
# Init SAM for segmentation task
model_type = "vit_h"
weight_path = "pretrained/sam_vit_h_4b8939.pth"
SAM_positive_sample_num = 20 # How many points we use for the positive sample num ()
SAM_negative_sample_num = 0 # How many points we use for the negative sample num
print("In multi processing, we will build an instance of mask_generator independently")
sam = sam_model_registry[model_type](checkpoint=weight_path).to(device="cuda")
mask_generator = SamAutomaticMaskGenerator(sam)
print("In multi processing, we will build an instance of sam_predictor independently")
sam_predictor = SamPredictor(sam)
counter = 0
while True:
counter += 1
if counter == 10:
counter = 0
gc.collect()
print("We will sleep here to clear memory")
time.sleep(5)
info = request_list[0]
request_list = request_list[1:]
if info == None:
print("This queue ends")
break
# Process each sub_input_dir and store the information there
sub_input_dir = info
img_pairs = generate_pairs(sub_input_dir, 0, num_frames-1)
print(img_pairs)
with torch.no_grad():
# Calculate the optical flow and return a status to say whther this generated flow is usable
status = calculate_flow(viz_root_dir, sub_input_dir, img_pairs, optical_flow_model, sam_predictor, SAM_positive_sample_num, SAM_negative_sample_num,
mask_generator, traj_visualization, keep_size = True)
# file = open("log.txt", "a")
print("The status for folder " + sub_input_dir + " is " + str(status) + "\n")
if status == False:
# If the status is failed, we will remove it afterwords
print("The status is Failed, so we won't store this one as one promising data")
else:
print("We have successfully process one!")
if __name__ == '__main__':
# Manage the paramter
parser = argparse.ArgumentParser()
parser.add_argument('--input_dir', default = '../validation_flow14/')
parser.add_argument('--num_workers', type = int, default = 1) # starting index of the image sequence
parser.add_argument('--viz_root_dir', default = 'viz_results')
parser.add_argument('--traj_visualization', default = True) # If this is True,
# list_start = 0
# list_end = 25000
num_frames = 14
args = parser.parse_args()
input_dir = args.input_dir
num_workers = args.num_workers
viz_root_dir = args.viz_root_dir
traj_visualization = args.traj_visualization
store_idx = 0
dir_list = []
for sub_input_name in sorted(os.listdir(input_dir)):
sub_input_dir = os.path.join(input_dir, sub_input_name)
# sub_store_dir = os.path.join(store_dir, "0"*(7-len(str(store_idx)))+str(store_idx))
store_idx += 1
dir_list.append(sub_input_dir)
# Truncate the list to the target
# dir_list = dir_list[list_start:]
# Use multiprocessing to handle to speed up
num = math.ceil(len(dir_list) / num_workers)
for idx in range(num_workers):
# set_start_method('spawn', force=True)
request_list = dir_list[:num]
request_list.append(None)
dir_list = dir_list[num:]
process_partial_request(request_list, num_frames, traj_visualization, viz_root_dir) # This is for debug purpose
# p = mp.Process(target=process_partial_request, args=(request_list, num_frames, traj_visualization, viz_root_dir, ))
# p.start()
print("Submitted all jobs!")
# p.join() # 好像不加这个multiprocess就莫名自己结束了
print("All task finished!")
|