Spaces:
Running
on
Zero
Running
on
Zero
File size: 39,790 Bytes
59b2a81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 |
#!/usr/bin/env python
'''
This file is to train stable video diffusion by my personal implementation which is based on diffusers' training example code.
'''
import argparse
import logging
import math
import os, sys
import time
import random
import shutil
import warnings
import cv2
from PIL import Image
from einops import rearrange, repeat
from pathlib import Path
from omegaconf import OmegaConf
import imageio
import accelerate
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import RandomSampler
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from packaging import version
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig
import diffusers
from diffusers import (
AutoencoderKLTemporalDecoder,
DDPMScheduler,
)
from diffusers.training_utils import EMAModel, compute_snr
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version, is_wandb_available, load_image, export_to_video
from diffusers.utils.import_utils import is_xformers_available
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils.torch_utils import randn_tensor
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
if is_wandb_available():
import wandb
# Import files from the local folder
root_path = os.path.abspath('.')
sys.path.append(root_path)
from svd.pipeline_stable_video_diffusion import StableVideoDiffusionPipeline
from svd.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel
from data_loader.video_dataset import Video_Dataset, get_video_frames, tokenize_captions
from utils.img_utils import resize_with_antialiasing
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
# check_min_version("0.25.0.dev0")
logger = get_logger(__name__)
warnings.filterwarnings('ignore')
###################################################################################################################################################
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Simple example of a ControlNet training script.")
parser.add_argument(
"--config_path",
type=str,
default="config/train_image2video.yaml",
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
args = parser.parse_args()
return args
def log_validation(vae, unet, image_encoder, text_encoder, tokenizer, config, accelerator, weight_dtype, step,
parent_store_folder = None, force_close_flip = False, use_ambiguous_prompt=False):
# This function will also be used in other files
print("Running validation... ")
# Init
validation_source_folder = config["validation_img_folder"]
# Init the pipeline
pipeline = StableVideoDiffusionPipeline.from_pretrained(
config["pretrained_model_name_or_path"],
vae = accelerator.unwrap_model(vae),
image_encoder = accelerator.unwrap_model(image_encoder),
unet = accelerator.unwrap_model(unet),
revision = None, # Set None directly now
torch_dtype = weight_dtype,
)
pipeline = pipeline.to(accelerator.device)
pipeline.set_progress_bar_config(disable=True)
# Process all image in the folder
frames_collection = []
for image_name in sorted(os.listdir(validation_source_folder)):
if accelerator.is_main_process:
if parent_store_folder is None:
validation_store_folder = os.path.join(config["validation_store_folder"] + "_" + config["scheduler"], "step_" + str(step), image_name)
else:
validation_store_folder = os.path.join(parent_store_folder, image_name)
if os.path.exists(validation_store_folder):
shutil.rmtree(validation_store_folder)
os.makedirs(validation_store_folder)
image_path = os.path.join(validation_source_folder, image_name, 'im_0.jpg')
ref_image = load_image(image_path)
ref_image = ref_image.resize((config["width"], config["height"]))
# Decide the motion score in SVD (mostly what we use is fix value now)
if config["motion_bucket_id"] is None:
raise NotImplementedError("We need a fixed motion_bucket_id in the config")
else:
reflected_motion_bucket_id = config["motion_bucket_id"]
print("Inference Motion Bucket ID is ", reflected_motion_bucket_id)
# Prepare text prompt
if config["use_text"]:
# Read the file
file_path = os.path.join(validation_source_folder, image_name, "lang.txt")
file = open(file_path, 'r')
prompt = file.readlines()[0] # Only read the first line
if use_ambiguous_prompt:
prompt = prompt.split(" ")[0] + " this to there"
print("We are creating ambiguous prompt, which is: ", prompt)
else:
prompt = ""
# Use the same tokenize process as the dataset preparation stage
tokenized_prompt = tokenize_captions(prompt, tokenizer, config, is_train=False).unsqueeze(0).to(accelerator.device) # Use unsqueeze to expand dim
# Store the prompt for the sanity check
f = open(os.path.join(validation_store_folder, "lang_cond.txt"), "a")
f.write(prompt)
f.close()
# Flip the image by chance (it is needed to check whether there is any object position words [left|right] in the prompt text)
flip = False
if not force_close_flip: # force_close_flip is True in testing time; else, we cannot match in the same standard
if random.random() < config["flip_aug_prob"]:
if config["use_text"]:
if prompt.find("left") == -1 and prompt.find("right") == -1: # Cannot have position word, like left and right (up and down is ok)
flip = True
else:
flip = True
if flip:
print("Use flip in validation!")
ref_image = ref_image.transpose(Image.FLIP_LEFT_RIGHT)
# Call the model for inference
with torch.autocast("cuda"):
frames = pipeline(
ref_image,
tokenized_prompt,
config["use_text"],
text_encoder,
height = config["height"],
width = config["width"],
num_frames = config["video_seq_length"],
num_inference_steps = config["num_inference_steps"],
decode_chunk_size = 8,
motion_bucket_id = reflected_motion_bucket_id,
fps = 7,
noise_aug_strength = config["inference_noise_aug_strength"],
).frames[0]
# Store the frames
# breakpoint()
for idx, frame in enumerate(frames):
frame.save(os.path.join(validation_store_folder, str(idx)+".png"))
imageio.mimsave(os.path.join(validation_store_folder, 'combined.gif'), frames) # gif storage quality is not high, recommend to check png images
frames_collection.append(frames)
# Cleaning process
del pipeline
torch.cuda.empty_cache()
return frames_collection # Return resuly based on the need
def tensor_to_vae_latent(inputs, vae):
video_length = inputs.shape[1]
inputs = rearrange(inputs, "b f c h w -> (b f) c h w")
latents = vae.encode(inputs).latent_dist.mode()
latents = rearrange(latents, "(b f) c h w -> b f c h w", f=video_length) # Use f or b to rearrage should have the same effect
latents = latents * vae.config.scaling_factor
return latents
def import_pretrained_text_encoder(pretrained_model_name_or_path: str, revision: str):
''' Import Text encoder information
'''
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path,
subfolder="text_encoder",
revision=revision,
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
else: # No other cases will be considerred
raise ValueError(f"{model_class} is not supported.")
def rand_log_normal(shape, loc=0., scale=1., device='cpu', dtype=torch.float32):
"""Draws samples from an lognormal distribution."""
u = torch.rand(shape, dtype=dtype, device=device) * (1 - 2e-7) + 1e-7
return torch.distributions.Normal(loc, scale).icdf(u).exp()
def get_add_time_ids(
unet_config,
expected_add_embed_dim,
fps,
motion_bucket_id,
noise_aug_strength,
dtype,
batch_size,
num_videos_per_prompt,
):
# Construct Basic add_time_ids items
add_time_ids = [fps, motion_bucket_id, noise_aug_strength]
passed_add_embed_dim = unet_config.addition_time_embed_dim * len(add_time_ids)
if expected_add_embed_dim != passed_add_embed_dim:
raise ValueError(
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
)
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
add_time_ids = add_time_ids.repeat(batch_size * num_videos_per_prompt, 1)
return add_time_ids
####################################################################################################################################################################
def main(config):
# Read Config Setting
resume_from_checkpoint = config["resume_from_checkpoint"]
output_dir = config["output_dir"]
logging_name = config["logging_name"]
mixed_precision = config["mixed_precision"]
report_to = config["report_to"]
pretrained_model_name_or_path = config["pretrained_model_name_or_path"]
pretrained_tokenizer_name_or_path = config["pretrained_tokenizer_name_or_path"]
gradient_checkpointing = config["gradient_checkpointing"]
learning_rate = config["learning_rate"]
adam_beta1 = config["adam_beta1"]
adam_beta2 = config["adam_beta2"]
adam_weight_decay = config["adam_weight_decay"]
adam_epsilon = config["adam_epsilon"]
train_batch_size = config["train_batch_size"]
dataloader_num_workers = config["dataloader_num_workers"]
gradient_accumulation_steps = config["gradient_accumulation_steps"]
num_train_iters = config["num_train_iters"]
lr_warmup_steps = config["lr_warmup_steps"]
checkpointing_steps = config["checkpointing_steps"]
process_fps = config["process_fps"]
train_noise_aug_strength = config["train_noise_aug_strength"]
use_8bit_adam = config["use_8bit_adam"]
scale_lr = config["scale_lr"]
conditioning_dropout_prob = config["conditioning_dropout_prob"]
checkpoints_total_limit = config["checkpoints_total_limit"]
validation_step = config["validation_step"]
partial_finetune = config['partial_finetune']
# Default Setting
revision = None
variant = "fp16"
lr_scheduler = "constant"
max_grad_norm = 1.0
tracker_project_name = "img2video"
num_videos_per_prompt = 1
seed = 42
# No CFG in training now
# Define the accelerator
logging_dir = Path(output_dir, logging_name)
accelerator_project_config = ProjectConfiguration(project_dir=output_dir, logging_dir=logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps = gradient_accumulation_steps,
mixed_precision = mixed_precision,
log_with = report_to,
project_config = accelerator_project_config,
)
generator = torch.Generator(device=accelerator.device).manual_seed(seed)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# Handle the repository creation
if accelerator.is_main_process and resume_from_checkpoint != "latest": # For the latest checkpoint version, we don't need to delete our folders
# Validation file
validation_store_folder = config["validation_store_folder"] + "_" + config["scheduler"]
print("We will remove ", validation_store_folder)
if os.path.exists(validation_store_folder):
archive_name = validation_store_folder + "_archive"
if os.path.exists(archive_name):
shutil.rmtree(archive_name)
print("We will move to archive ", archive_name)
os.rename(validation_store_folder, archive_name)
os.makedirs(validation_store_folder)
# Output Dir
if os.path.exists(output_dir):
shutil.rmtree(output_dir)
# os.makedirs(output_dir, exist_ok=True)
# Log
if os.path.exists("runs"):
shutil.rmtree("runs")
# Copy the config to here
os.system(" cp config/train_image2video.yaml " + validation_store_folder + "/")
# Load All Module Needed
feature_extractor = CLIPImageProcessor.from_pretrained(
pretrained_model_name_or_path, subfolder="feature_extractor", revision=revision
) # This instance has now weight, they are just seeting file
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
pretrained_model_name_or_path, subfolder="image_encoder", revision=revision, variant=variant
)
vae = AutoencoderKLTemporalDecoder.from_pretrained(
pretrained_model_name_or_path, subfolder="vae", revision=revision, variant=variant
)
if config["load_unet_path"] != None:
print("We will load UNet from ", config["load_unet_path"])
unet = UNetSpatioTemporalConditionModel.from_pretrained(
config["load_unet_path"],
subfolder = "unet",
low_cpu_mem_usage = True,
) # For the variant, we don't have fp16 version, so we will read from fp32
else:
print("We will only use SVD pretrained UNet")
unet = UNetSpatioTemporalConditionModel.from_pretrained(
pretrained_model_name_or_path,
subfolder = "unet",
low_cpu_mem_usage = True,
variant = variant,
)
# Prepare for the tokenizer if use text
tokenizer = AutoTokenizer.from_pretrained(
pretrained_tokenizer_name_or_path,
subfolder = "tokenizer",
revision = revision,
use_fast = False,
)
if config["use_text"]:
# Clip Text Encoder
text_encoder_cls = import_pretrained_text_encoder(pretrained_tokenizer_name_or_path, revision)
text_encoder = text_encoder_cls.from_pretrained(
pretrained_tokenizer_name_or_path, subfolder = "text_encoder", revision = revision, variant = variant
)
else:
text_encoder = None
# Store the config due to the disappearance after accelerator prepare (This is written to handle some unknown phenomenon)
unet_config = unet.config
expected_add_embed_dim = unet.add_embedding.linear_1.in_features
# Freeze vae + feature_extractor + image_encoder, but set unet to trainable
vae.requires_grad_(False)
image_encoder.requires_grad_(False)
unet.requires_grad_(False) # Will switch back to train mode later on
if config["use_text"]:
text_encoder.requires_grad_(False) # All set with no grad needed (like VAE) follow other T2I papers
# For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora unet) to half-precision
# as these weights are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move vae + image_encoder to gpu and cast to weight_dtype
vae.to(accelerator.device, dtype=weight_dtype)
image_encoder.to(accelerator.device, dtype=weight_dtype)
# unet.to(accelerator.device, dtype=weight_dtype)
if config["use_text"]:
text_encoder.to(accelerator.device, dtype=weight_dtype)
# Acceleration: `accelerate` 0.16.0 will have better support for customized saving
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
for i, model in enumerate(models):
model.save_pretrained(os.path.join(output_dir, "unet"))
# make sure to pop weight so that corresponding model is not saved again
weights.pop()
def load_model_hook(models, input_dir):
for i in range(len(models)):
# pop models so that they are not loaded again
model = models.pop()
# load diffusers style into model
load_model = UNetSpatioTemporalConditionModel.from_pretrained(input_dir, subfolder="unet")
model.register_to_config(**load_model.config)
model.load_state_dict(load_model.state_dict())
del load_model
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
if gradient_checkpointing:
unet.enable_gradient_checkpointing()
################################ Make Training dataset ###############################
train_dataset = Video_Dataset(config, device = accelerator.device, tokenizer=tokenizer)
sampler = RandomSampler(train_dataset)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
sampler = sampler,
batch_size = train_batch_size,
num_workers = dataloader_num_workers * accelerator.num_processes,
)
#######################################################################################
####################################### Optimizer Setting #####################################################################
if scale_lr:
learning_rate = (
learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes
)
# 8bit adam to save more memory (Usally we need this to save the memory)
if use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
)
optimizer_cls = bnb.optim.AdamW8bit
else:
optimizer_cls = torch.optim.AdamW
# Switch back to unet in training mode
unet.requires_grad_(True)
############################## For partial fine-tune setting ##############################
parameters_list = []
for name, param in unet.named_parameters():
if partial_finetune: # The partial finetune we use is to only train attn layers, which will be ~190M params (TODO:needs to check later for exact value)
# Full Spatial: .transformer_blocks. && spatial_
# Attn + All emb: attn && emb
if name.find("attn") != -1 or name.find("emb") != -1: # Only block the spatial Transformer
parameters_list.append(param)
param.requires_grad = True
else:
param.requires_grad = False
else:
parameters_list.append(param)
param.requires_grad = True
# Double check what will be trained
total_params_for_training = 0
# if os.path.exists("param_lists.txt"):
# os.remove("param_lists.txt")
# file1 = open("param_lists.txt","a")
for name, param in unet.named_parameters():
# file1.write(name + "\n")
if param.requires_grad:
total_params_for_training += param.numel()
print(name + " requires grad update")
print("Total parameter that will be trained has ", total_params_for_training)
##########################################################################################
# Optimizer creation
optimizer = optimizer_cls(
parameters_list,
lr = learning_rate,
betas = (adam_beta1, adam_beta2),
weight_decay = adam_weight_decay,
eps = adam_epsilon,
)
# Scheduler and Training steps
dataset_length = len(train_dataset)
print("Dataset length read from the train side is ", dataset_length)
num_update_steps_per_epoch = math.ceil(dataset_length / gradient_accumulation_steps)
max_train_steps = num_train_iters * train_batch_size
# Learning Rate Scheduler (we all use constant)
lr_scheduler = get_scheduler(
"constant",
optimizer = optimizer,
num_warmup_steps = lr_warmup_steps * accelerator.num_processes,
num_training_steps = max_train_steps * accelerator.num_processes,
num_cycles = 1,
power = 1.0,
)
#####################################################################################################################################
# Prepare everything with our `accelerator`.
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, optimizer, train_dataloader, lr_scheduler
)
# We need to RECALCULATE our total training steps as the size of the training dataloader may have changed.
print("accelerator.num_processes is ", accelerator.num_processes)
print("num_train_iters is ", num_train_iters)
num_train_epochs = math.ceil(num_train_iters * accelerator.num_processes * gradient_accumulation_steps / dataset_length)
print("num_train_epochs is ", num_train_epochs)
# We need to initialize the trackers we use, and also store our configuration.
if accelerator.is_main_process: # Only on the main process!
tracker_config = dict(vars(args))
accelerator.init_trackers(tracker_project_name, tracker_config)
# Train!
logger.info("***** Running training *****")
logger.info(f" Dataset Length = {dataset_length}")
logger.info(f" Num Epochs = {num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {train_batch_size}")
logger.info(f" Gradient Accumulation steps = {gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {max_train_steps}")
# Load the Closest / Best weight
global_step = 0 # Catch the current iteration
first_epoch = 0
if resume_from_checkpoint:
if resume_from_checkpoint != "latest":
path = os.path.basename(resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
print("We will resume the latest weight ", path)
if path is None: # Don't resume
accelerator.print(
f"Checkpoint '{resume_from_checkpoint}' does not exist. Starting a new training run."
)
resume_from_checkpoint = None
initial_global_step = 0
else: # Resume from the closest checkpoint
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(output_dir, path))
global_step = int(path.split("-")[1])
initial_global_step = global_step
first_epoch = global_step // num_update_steps_per_epoch
else:
initial_global_step = 0
if accelerator.is_main_process:
print("Initial Learning rate is ", optimizer.param_groups[0]['lr'])
print("global_step will start from ", global_step)
progress_bar = tqdm(
range(initial_global_step, max_train_steps),
initial=initial_global_step,
desc="Steps",
# Only show the progress bar once on each machine.
disable=not accelerator.is_local_main_process,
)
# Prepare tensorboard log
writer = SummaryWriter()
######################################################### Auxiliary Function #################################################################
def encode_clip(pixel_values, prompt):
''' Encoder hidden states input source
pixel_values: first frame pixel information
prompt: language prompt with takenized
'''
########################################## Prepare the Text Embedding #####################################################
# pixel_values is in the range [-1, 1]
pixel_values = resize_with_antialiasing(pixel_values, (224, 224))
pixel_values = (pixel_values + 1.0) / 2.0 # [-1, 1] -> [0, 1]
# Normalize the image with for CLIP input
pixel_values = feature_extractor(
images=pixel_values,
do_normalize=True,
do_center_crop=False,
do_resize=False,
do_rescale=False,
return_tensors="pt",
).pixel_values
# The following is the same as _encode_image in SVD pipeline
pixel_values = pixel_values.to(device=accelerator.device, dtype=weight_dtype)
image_embeddings = image_encoder(pixel_values).image_embeds
image_embeddings = image_embeddings.unsqueeze(1)
# duplicate image embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = image_embeddings.shape
image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1)
encoder_hidden_states = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
#############################################################################################################################
########################################## Prepare the Text embedding if needed #############################################
if config["use_text"]:
text_embeddings = text_encoder(prompt)[0]
# Concat two embeddings together on dim 1
encoder_hidden_states = torch.cat((text_embeddings, encoder_hidden_states), dim=1)
# Layer norm on the last dim
layer_norm = nn.LayerNorm((78, 1024)).to(device=accelerator.device, dtype=weight_dtype)
encoder_hidden_states_norm = layer_norm(encoder_hidden_states)
# Return
return encoder_hidden_states_norm
else: # Just return back default on
return encoder_hidden_states
#############################################################################################################################
####################################################################################################################################################
############################################################################################################################
# For the training, we mimic the code from T2I in diffusers
for epoch in range(first_epoch, num_train_epochs):
unet.train()
train_loss = 0.0
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(unet):
# batch is a torch tensor with range of [-1, 1] but no other pre-porcessing
video_frames = batch["video_frames"].to(weight_dtype).to(accelerator.device, non_blocking=True)
reflected_motion_bucket_id = batch["reflected_motion_bucket_id"]
prompt = batch["prompt"]
# Images to VAE latent space
latents = tensor_to_vae_latent(video_frames, vae)
##################################### Add Noise ########################################
bsz, num_frames = latents.shape[:2]
# Encode the first frame
conditional_pixel_values = video_frames[:, 0, :, :, :] # First frame
# Following AnimateSomething, we use constant to repace cond_sigmas
conditional_pixel_values = conditional_pixel_values + torch.randn_like(conditional_pixel_values) * train_noise_aug_strength
conditional_latents = vae.encode(conditional_pixel_values).latent_dist.mode() # mode() returns mean value no std influence
conditional_latents = repeat(conditional_latents, 'b c h w->b f c h w', f=num_frames) # copied across the frame axis to be the same shape as noise
# Add noise to the latents according to the noise magnitude at each timestep
# This is the forward diffusion process
sigmas = rand_log_normal(shape=[bsz,], loc=config["noise_mean"], scale=config["noise_std"]).to(latents.device)
sigmas = sigmas[:, None, None, None, None]
noisy_latents = latents + torch.randn_like(latents) * sigmas
inp_noisy_latents = noisy_latents / ((sigmas**2 + 1) ** 0.5)
# For the encoder hidden states based on the first frame and prompt
encoder_hidden_states = encode_clip(video_frames[:, 0, :, :, :].float(), prompt) # First Frame + Text Prompt
# Conditioning dropout to support classifier-free guidance during inference. For more details
# check out the section 3.2.1 of the original paper https://arxiv.org/abs/2211.09800 (InstructPix2Pix).
if conditioning_dropout_prob != 0:
random_p = torch.rand(bsz, device=latents.device, generator=generator)
# Sample masks for the edit prompts.
prompt_mask = random_p < 2 * conditioning_dropout_prob
prompt_mask = prompt_mask.reshape(bsz, 1, 1)
# Final text conditioning.
null_conditioning = torch.zeros_like(encoder_hidden_states)
encoder_hidden_states = torch.where(prompt_mask, null_conditioning, encoder_hidden_states)
# Sample masks for the original images.
image_mask_dtype = conditional_latents.dtype
image_mask = 1 - ((random_p >= conditioning_dropout_prob).to(image_mask_dtype) * (random_p < 3 * conditioning_dropout_prob).to(image_mask_dtype))
image_mask = image_mask.reshape(bsz, 1, 1, 1)
# Final image conditioning.
conditional_latents = image_mask * conditional_latents
# Concatenate the `conditional_latents` with the `noisy_latents`.
inp_noisy_latents = torch.cat([inp_noisy_latents, conditional_latents], dim=2)
# GT noise
target = latents
##########################################################################################
################################ Other Embedding and Conditioning ###################################
reflected_motion_bucket_id = torch.sum(reflected_motion_bucket_id)/len(reflected_motion_bucket_id)
reflected_motion_bucket_id = int(reflected_motion_bucket_id.cpu().detach().numpy())
# print("Training reflected_motion_bucket_id is ", reflected_motion_bucket_id)
added_time_ids = get_add_time_ids(
unet_config,
expected_add_embed_dim,
process_fps,
reflected_motion_bucket_id,
train_noise_aug_strength,
weight_dtype,
train_batch_size,
num_videos_per_prompt,
) # The same as SVD pipeline's _get_add_time_ids
added_time_ids = added_time_ids.to(accelerator.device)
timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas]).to(accelerator.device)
#####################################################################################################
###################################### Predict Noise ######################################
model_pred = unet(
inp_noisy_latents,
timesteps,
encoder_hidden_states,
added_time_ids = added_time_ids
).sample
# Denoise the latents
c_out = -sigmas / ((sigmas**2 + 1)**0.5)
c_skip = 1 / (sigmas**2 + 1)
denoised_latents = model_pred * c_out + c_skip * noisy_latents
weighing = (1 + sigmas ** 2) * (sigmas**-2.0)
##########################################################################################
############################### Calculate Loss and Update Optimizer #######################
# MSE loss
loss = torch.mean(
( weighing.float() * (denoised_latents.float() - target.float())**2 ).reshape(target.shape[0], -1),
dim=1,
)
loss = loss.mean()
# Gather the losses across all processes for logging (if we use distributed training).
avg_loss = accelerator.gather(loss.repeat(train_batch_size)).mean()
train_loss += avg_loss.item() / gradient_accumulation_steps
# Update Tensorboard
writer.add_scalar('Loss/train-Loss-Step', avg_loss, global_step)
# Backpropagate
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
##########################################################################################
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
accelerator.log({"train_loss": train_loss}, step=global_step)
train_loss = 0.0
########################################## Checkpoints #########################################
if global_step != 0 and global_step % checkpointing_steps == 0:
if accelerator.is_main_process:
start = time.time()
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
if checkpoints_total_limit is not None:
checkpoints = os.listdir(output_dir)
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
if len(checkpoints) >= checkpoints_total_limit:
num_to_remove = len(checkpoints) - checkpoints_total_limit + 1
removing_checkpoints = checkpoints[0:num_to_remove]
logger.info(
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
)
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
for removing_checkpoint in removing_checkpoints:
removing_checkpoint = os.path.join(output_dir, removing_checkpoint)
shutil.rmtree(removing_checkpoint)
save_path = os.path.join(output_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
print("Save time use " + str(time.time() - start) + " s")
########################################################################################################
# Update Log
logs = {"step_loss": loss.detach().item(), "lr": optimizer.param_groups[0]['lr']}
progress_bar.set_postfix(**logs)
##################################### Validation per XXX iterations #######################################
if accelerator.is_main_process:
if global_step % validation_step == 0: # Fixed 100 steps to validate
if config["validation_img_folder"] is not None:
log_validation(
vae,
unet,
image_encoder,
text_encoder,
tokenizer,
config,
accelerator,
weight_dtype,
global_step,
use_ambiguous_prompt = config["mix_ambiguous"],
)
###############################################################################################################
# Update Steps and Break if needed
global_step += 1
if global_step >= max_train_steps:
break
############################################################################################################################
if __name__ == "__main__":
args = parse_args()
config = OmegaConf.load(args.config_path)
main(config)
|