# -*- coding: utf-8 -*- import os import torch from torch import nn as nn import torch.nn.functional as F class PixelLoss(nn.Module): def __init__(self) -> None: super(PixelLoss, self).__init__() self.criterion = torch.nn.L1Loss().cuda() # its default will take the mean of this batch def forward(self, gen_hr, org_hr, batch_idx): # Calculate general PSNR pixel_loss = self.criterion(gen_hr, org_hr) return pixel_loss class L1_Charbonnier_loss(nn.Module): """L1 Charbonnierloss.""" def __init__(self): super(L1_Charbonnier_loss, self).__init__() self.eps = 1e-6 # already use square root def forward(self, X, Y, batch_idx): diff = torch.add(X, -Y) error = torch.sqrt(diff * diff + self.eps) loss = torch.mean(error) return loss """ Created on Thu Dec 3 00:28:15 2020 @author: Yunpeng Li, Tianjin University """ class MS_SSIM_L1_LOSS(nn.Module): # Have to use cuda, otherwise the speed is too slow. def __init__(self, alpha, gaussian_sigmas=[0.5, 1.0, 2.0, 4.0, 8.0], data_range = 1.0, K=(0.01, 0.4), compensation=1.0, cuda_dev=0,): super(MS_SSIM_L1_LOSS, self).__init__() self.DR = data_range self.C1 = (K[0] * data_range) ** 2 self.C2 = (K[1] * data_range) ** 2 self.pad = int(2 * gaussian_sigmas[-1]) self.alpha = alpha self.compensation=compensation filter_size = int(4 * gaussian_sigmas[-1] + 1) g_masks = torch.zeros((3*len(gaussian_sigmas), 1, filter_size, filter_size)) for idx, sigma in enumerate(gaussian_sigmas): # r0,g0,b0,r1,g1,b1,...,rM,gM,bM g_masks[3*idx+0, 0, :, :] = self._fspecial_gauss_2d(filter_size, sigma) g_masks[3*idx+1, 0, :, :] = self._fspecial_gauss_2d(filter_size, sigma) g_masks[3*idx+2, 0, :, :] = self._fspecial_gauss_2d(filter_size, sigma) self.g_masks = g_masks.cuda(cuda_dev) from torch.utils.tensorboard import SummaryWriter self.writer = SummaryWriter() def _fspecial_gauss_1d(self, size, sigma): """Create 1-D gauss kernel Args: size (int): the size of gauss kernel sigma (float): sigma of normal distribution Returns: torch.Tensor: 1D kernel (size) """ coords = torch.arange(size).to(dtype=torch.float) coords -= size // 2 g = torch.exp(-(coords ** 2) / (2 * sigma ** 2)) g /= g.sum() return g.reshape(-1) def _fspecial_gauss_2d(self, size, sigma): """Create 2-D gauss kernel Args: size (int): the size of gauss kernel sigma (float): sigma of normal distribution Returns: torch.Tensor: 2D kernel (size x size) """ gaussian_vec = self._fspecial_gauss_1d(size, sigma) return torch.outer(gaussian_vec, gaussian_vec) def forward(self, x, y, batch_idx): ''' Args: x (tensor): the input for a tensor y (tensor): the input for another tensor batch_idx (int): the iteration now Returns: combined_loss (torch): loss value of L1 with MS-SSIM loss ''' # b, c, h, w = x.shape mux = F.conv2d(x, self.g_masks, groups=3, padding=self.pad) muy = F.conv2d(y, self.g_masks, groups=3, padding=self.pad) mux2 = mux * mux muy2 = muy * muy muxy = mux * muy sigmax2 = F.conv2d(x * x, self.g_masks, groups=3, padding=self.pad) - mux2 sigmay2 = F.conv2d(y * y, self.g_masks, groups=3, padding=self.pad) - muy2 sigmaxy = F.conv2d(x * y, self.g_masks, groups=3, padding=self.pad) - muxy # l(j), cs(j) in MS-SSIM l = (2 * muxy + self.C1) / (mux2 + muy2 + self.C1) # [B, 15, H, W] cs = (2 * sigmaxy + self.C2) / (sigmax2 + sigmay2 + self.C2) lM = l[:, -1, :, :] * l[:, -2, :, :] * l[:, -3, :, :] PIcs = cs.prod(dim=1) loss_ms_ssim = 1 - lM*PIcs # [B, H, W] loss_l1 = F.l1_loss(x, y, reduction='none') # [B, 3, H, W] # average l1 loss in 3 channels gaussian_l1 = F.conv2d(loss_l1, self.g_masks.narrow(dim=0, start=-3, length=3), groups=3, padding=self.pad).mean(1) # [B, H, W] loss_mix = self.alpha * loss_ms_ssim + (1 - self.alpha) * gaussian_l1 / self.DR loss_mix = self.compensation*loss_mix # Currently, we set compensation to 1.0 combined_loss = loss_mix.mean() self.writer.add_scalar('Loss/ms_ssim_loss-iteration', loss_ms_ssim.mean(), batch_idx) self.writer.add_scalar('Loss/l1_loss-iteration', gaussian_l1.mean(), batch_idx) return combined_loss