# -*- coding: utf-8 -*- ''' From ESRGAN ''' import os, sys import cv2 import numpy as np import torch from torch.nn import functional as F from scipy import special import random import math from torchvision.utils import make_grid from degradation.ESR.degradations_functionality import * root_path = os.path.abspath('.') sys.path.append(root_path) def np2tensor(np_frame): return torch.from_numpy(np.transpose(np_frame, (2, 0, 1))).unsqueeze(0).cuda().float()/255 def tensor2np(tensor): # tensor should be batch size1 and cannot be grayscale input return (np.transpose(tensor.detach().squeeze(0).cpu().numpy(), (1, 2, 0))) * 255 def mass_tensor2np(tensor): ''' The input tensor is massive tensor ''' return (np.transpose(tensor.detach().squeeze(0).cpu().numpy(), (0, 2, 3, 1))) * 255 def save_img(tensor, save_name): np_img = tensor2np(tensor)[:,:,16] # np_img = np.expand_dims(np_img, axis=2) cv2.imwrite(save_name, np_img) def filter2D(img, kernel): """PyTorch version of cv2.filter2D Args: img (Tensor): (b, c, h, w) kernel (Tensor): (b, k, k) """ k = kernel.size(-1) b, c, h, w = img.size() if k % 2 == 1: img = F.pad(img, (k // 2, k // 2, k // 2, k // 2), mode='reflect') else: raise ValueError('Wrong kernel size') ph, pw = img.size()[-2:] if kernel.size(0) == 1: # apply the same kernel to all batch images img = img.view(b * c, 1, ph, pw) kernel = kernel.view(1, 1, k, k) return F.conv2d(img, kernel, padding=0).view(b, c, h, w) else: img = img.view(1, b * c, ph, pw) kernel = kernel.view(b, 1, k, k).repeat(1, c, 1, 1).view(b * c, 1, k, k) return F.conv2d(img, kernel, groups=b * c).view(b, c, h, w) def generate_kernels(opt): kernel_range = [2 * v + 1 for v in range(opt["kernel_range"][0], opt["kernel_range"][1])] # ------------------------ Generate kernels (used in the first degradation) ------------------------ # kernel_size = random.choice(kernel_range) if np.random.uniform() < opt['sinc_prob']: # 里面加一层sinc filter,但是10%的概率 # this sinc filter setting is for kernels ranging from [7, 21] if kernel_size < 13: omega_c = np.random.uniform(np.pi / 3, np.pi) else: omega_c = np.random.uniform(np.pi / 5, np.pi) kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) else: kernel = random_mixed_kernels( opt['kernel_list'], opt['kernel_prob'], kernel_size, opt['blur_sigma'], opt['blur_sigma'], [-math.pi, math.pi], opt['betag_range'], opt['betap_range'], noise_range=None) # pad kernel: -在v2我是直接省略了padding pad_size = (21 - kernel_size) // 2 kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size))) # ------------------------ Generate kernels (used in the second degradation) ------------------------ # kernel_size = random.choice(kernel_range) if np.random.uniform() < opt['sinc_prob2']: # 里面加一层sinc filter,但是10%的概率 if kernel_size < 13: omega_c = np.random.uniform(np.pi / 3, np.pi) else: omega_c = np.random.uniform(np.pi / 5, np.pi) kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) else: kernel2 = random_mixed_kernels( opt['kernel_list2'], opt['kernel_prob2'], kernel_size, opt['blur_sigma2'], opt['blur_sigma2'], [-math.pi, math.pi], opt['betag_range2'], opt['betap_range2'], noise_range=None) # pad kernel pad_size = (21 - kernel_size) // 2 kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size))) kernel = torch.FloatTensor(kernel) kernel2 = torch.FloatTensor(kernel2) return (kernel, kernel2)