import math from abc import ABC from math import prod import torch import torch.nn as nn import torch.nn.functional as F from architecture.grl_common.ops import ( bchw_to_bhwc, bchw_to_blc, blc_to_bchw, blc_to_bhwc, calculate_mask, calculate_mask_all, get_relative_coords_table_all, get_relative_position_index_simple, window_partition, window_reverse, ) from architecture.grl_common.swin_v1_block import Mlp from timm.models.layers import DropPath class CPB_MLP(nn.Sequential): def __init__(self, in_channels, out_channels, channels=512): m = [ nn.Linear(in_channels, channels, bias=True), nn.ReLU(inplace=True), nn.Linear(channels, out_channels, bias=False), ] super(CPB_MLP, self).__init__(*m) class AffineTransformWindow(nn.Module): r"""Affine transformation of the attention map. The window is a square window. Supports attention between different window sizes """ def __init__( self, num_heads, input_resolution, window_size, pretrained_window_size=[0, 0], shift_size=0, anchor_window_down_factor=1, args=None, ): super(AffineTransformWindow, self).__init__() # print("AffineTransformWindow", args) self.num_heads = num_heads self.input_resolution = input_resolution self.window_size = window_size self.pretrained_window_size = pretrained_window_size self.shift_size = shift_size self.anchor_window_down_factor = anchor_window_down_factor self.use_buffer = args.use_buffer logit_scale = torch.log(10 * torch.ones((num_heads, 1, 1))) self.logit_scale = nn.Parameter(logit_scale, requires_grad=True) # mlp to generate continuous relative position bias self.cpb_mlp = CPB_MLP(2, num_heads) if self.use_buffer: table = get_relative_coords_table_all( window_size, pretrained_window_size, anchor_window_down_factor ) index = get_relative_position_index_simple( window_size, anchor_window_down_factor ) self.register_buffer("relative_coords_table", table) self.register_buffer("relative_position_index", index) if self.shift_size > 0: attn_mask = calculate_mask( input_resolution, self.window_size, self.shift_size ) else: attn_mask = None self.register_buffer("attn_mask", attn_mask) def forward(self, attn, x_size): B_, H, N, _ = attn.shape device = attn.device # logit scale attn = attn * torch.clamp(self.logit_scale, max=math.log(1.0 / 0.01)).exp() # relative position bias if self.use_buffer: table = self.relative_coords_table index = self.relative_position_index else: table = get_relative_coords_table_all( self.window_size, self.pretrained_window_size, self.anchor_window_down_factor, ).to(device) index = get_relative_position_index_simple( self.window_size, self.anchor_window_down_factor ).to(device) bias_table = self.cpb_mlp(table) # 2*Wh-1, 2*Ww-1, num_heads bias_table = bias_table.view(-1, self.num_heads) win_dim = prod(self.window_size) bias = bias_table[index.view(-1)] bias = bias.view(win_dim, win_dim, -1).permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww bias = 16 * torch.sigmoid(bias) attn = attn + bias.unsqueeze(0) # W-MSA/SW-MSA if self.use_buffer: mask = self.attn_mask # during test and window shift, recalculate the mask if self.input_resolution != x_size and self.shift_size > 0: mask = calculate_mask(x_size, self.window_size, self.shift_size) mask = mask.to(attn.device) else: if self.shift_size > 0: mask = calculate_mask(x_size, self.window_size, self.shift_size) mask = mask.to(attn.device) else: mask = None # shift attention mask if mask is not None: nW = mask.shape[0] mask = mask.unsqueeze(1).unsqueeze(0) attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask attn = attn.view(-1, self.num_heads, N, N) return attn class AffineTransformStripe(nn.Module): r"""Affine transformation of the attention map. The window is a stripe window. Supports attention between different window sizes """ def __init__( self, num_heads, input_resolution, stripe_size, stripe_groups, stripe_shift, pretrained_stripe_size=[0, 0], anchor_window_down_factor=1, window_to_anchor=True, args=None, ): super(AffineTransformStripe, self).__init__() self.num_heads = num_heads self.input_resolution = input_resolution self.stripe_size = stripe_size self.stripe_groups = stripe_groups self.pretrained_stripe_size = pretrained_stripe_size # TODO: be careful when determining the pretrained_stripe_size self.stripe_shift = stripe_shift stripe_size, shift_size = self._get_stripe_info(input_resolution) self.anchor_window_down_factor = anchor_window_down_factor self.window_to_anchor = window_to_anchor self.use_buffer = args.use_buffer logit_scale = torch.log(10 * torch.ones((num_heads, 1, 1))) self.logit_scale = nn.Parameter(logit_scale, requires_grad=True) # mlp to generate continuous relative position bias self.cpb_mlp = CPB_MLP(2, num_heads) if self.use_buffer: table = get_relative_coords_table_all( stripe_size, pretrained_stripe_size, anchor_window_down_factor ) index = get_relative_position_index_simple( stripe_size, anchor_window_down_factor, window_to_anchor ) self.register_buffer("relative_coords_table", table) self.register_buffer("relative_position_index", index) if self.stripe_shift: attn_mask = calculate_mask_all( input_resolution, stripe_size, shift_size, anchor_window_down_factor, window_to_anchor, ) else: attn_mask = None self.register_buffer("attn_mask", attn_mask) def forward(self, attn, x_size): B_, H, N1, N2 = attn.shape device = attn.device # logit scale attn = attn * torch.clamp(self.logit_scale, max=math.log(1.0 / 0.01)).exp() # relative position bias stripe_size, shift_size = self._get_stripe_info(x_size) fixed_stripe_size = ( self.stripe_groups[0] is None and self.stripe_groups[1] is None ) if not self.use_buffer or ( self.use_buffer and self.input_resolution != x_size and not fixed_stripe_size ): # during test and stripe size is not fixed. pretrained_stripe_size = ( self.pretrained_stripe_size ) # or stripe_size; Needs further pondering table = get_relative_coords_table_all( stripe_size, pretrained_stripe_size, self.anchor_window_down_factor ) table = table.to(device) index = get_relative_position_index_simple( stripe_size, self.anchor_window_down_factor, self.window_to_anchor ).to(device) else: table = self.relative_coords_table index = self.relative_position_index # The same table size-> 1, Wh+AWh-1, Ww+AWw-1, 2 # But different index size -> # Wh*Ww, AWh*AWw # if N1 < N2: # index = index.transpose(0, 1) bias_table = self.cpb_mlp(table).view(-1, self.num_heads) # if not self.training: # print(bias_table.shape, index.max(), index.min()) bias = bias_table[index.view(-1)] bias = bias.view(N1, N2, -1).permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww bias = 16 * torch.sigmoid(bias) # print(N1, N2, attn.shape, bias.unsqueeze(0).shape) attn = attn + bias.unsqueeze(0) # W-MSA/SW-MSA if self.use_buffer: mask = self.attn_mask # during test and window shift, recalculate the mask if self.input_resolution != x_size and self.stripe_shift > 0: mask = calculate_mask_all( x_size, stripe_size, shift_size, self.anchor_window_down_factor, self.window_to_anchor, ) mask = mask.to(device) else: if self.stripe_shift > 0: mask = calculate_mask_all( x_size, stripe_size, shift_size, self.anchor_window_down_factor, self.window_to_anchor, ) mask = mask.to(attn.device) else: mask = None # shift attention mask if mask is not None: nW = mask.shape[0] mask = mask.unsqueeze(1).unsqueeze(0) attn = attn.view(B_ // nW, nW, self.num_heads, N1, N2) + mask attn = attn.view(-1, self.num_heads, N1, N2) return attn def _get_stripe_info(self, input_resolution): stripe_size, shift_size = [], [] for s, g, d in zip(self.stripe_size, self.stripe_groups, input_resolution): if g is None: stripe_size.append(s) shift_size.append(s // 2 if self.stripe_shift else 0) else: stripe_size.append(d // g) shift_size.append(0 if g == 1 else d // (g * 2)) return stripe_size, shift_size class Attention(ABC, nn.Module): def __init__(self): super(Attention, self).__init__() def attn(self, q, k, v, attn_transform, x_size, reshape=True): # cosine attention map B_, _, H, head_dim = q.shape if self.euclidean_dist: attn = torch.norm(q.unsqueeze(-2) - k.unsqueeze(-3), dim=-1) else: attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1) attn = attn_transform(attn, x_size) # attention attn = self.softmax(attn) attn = self.attn_drop(attn) x = attn @ v # B_, H, N1, head_dim if reshape: x = x.transpose(1, 2).reshape(B_, -1, H * head_dim) # B_, N, C return x class WindowAttention(Attention): r"""Window attention. QKV is the input to the forward method. Args: num_heads (int): Number of attention heads. attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 pretrained_window_size (tuple[int]): The height and width of the window in pre-training. """ def __init__( self, input_resolution, window_size, num_heads, window_shift=False, attn_drop=0.0, pretrained_window_size=[0, 0], args=None, ): super(WindowAttention, self).__init__() self.input_resolution = input_resolution self.window_size = window_size self.pretrained_window_size = pretrained_window_size self.num_heads = num_heads self.shift_size = window_size[0] // 2 if window_shift else 0 self.euclidean_dist = args.euclidean_dist self.attn_transform = AffineTransformWindow( num_heads, input_resolution, window_size, pretrained_window_size, self.shift_size, args=args, ) self.attn_drop = nn.Dropout(attn_drop) self.softmax = nn.Softmax(dim=-1) def forward(self, qkv, x_size): """ Args: qkv: input QKV features with shape of (B, L, 3C) x_size: use x_size to determine whether the relative positional bias table and index need to be regenerated. """ H, W = x_size B, L, C = qkv.shape qkv = qkv.view(B, H, W, C) # cyclic shift if self.shift_size > 0: qkv = torch.roll( qkv, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2) ) # partition windows qkv = window_partition(qkv, self.window_size) # nW*B, wh, ww, C qkv = qkv.view(-1, prod(self.window_size), C) # nW*B, wh*ww, C B_, N, _ = qkv.shape qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # attention x = self.attn(q, k, v, self.attn_transform, x_size) # merge windows x = x.view(-1, *self.window_size, C // 3) x = window_reverse(x, self.window_size, x_size) # B, H, W, C/3 # reverse cyclic shift if self.shift_size > 0: x = torch.roll(x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) x = x.view(B, L, C // 3) return x def extra_repr(self) -> str: return ( f"window_size={self.window_size}, shift_size={self.shift_size}, " f"pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}" ) def flops(self, N): # calculate flops for 1 window with token length of N flops = 0 # qkv = self.qkv(x) flops += N * self.dim * 3 * self.dim # attn = (q @ k.transpose(-2, -1)) flops += self.num_heads * N * (self.dim // self.num_heads) * N # x = (attn @ v) flops += self.num_heads * N * N * (self.dim // self.num_heads) # x = self.proj(x) flops += N * self.dim * self.dim return flops class StripeAttention(Attention): r"""Stripe attention Args: stripe_size (tuple[int]): The height and width of the stripe. num_heads (int): Number of attention heads. attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 pretrained_stripe_size (tuple[int]): The height and width of the stripe in pre-training. """ def __init__( self, input_resolution, stripe_size, stripe_groups, stripe_shift, num_heads, attn_drop=0.0, pretrained_stripe_size=[0, 0], args=None, ): super(StripeAttention, self).__init__() self.input_resolution = input_resolution self.stripe_size = stripe_size # Wh, Ww self.stripe_groups = stripe_groups self.stripe_shift = stripe_shift self.num_heads = num_heads self.pretrained_stripe_size = pretrained_stripe_size self.euclidean_dist = args.euclidean_dist self.attn_transform = AffineTransformStripe( num_heads, input_resolution, stripe_size, stripe_groups, stripe_shift, pretrained_stripe_size, anchor_window_down_factor=1, args=args, ) self.attn_drop = nn.Dropout(attn_drop) self.softmax = nn.Softmax(dim=-1) def forward(self, qkv, x_size): """ Args: x: input features with shape of (B, L, C) stripe_size: use stripe_size to determine whether the relative positional bias table and index need to be regenerated. """ H, W = x_size B, L, C = qkv.shape qkv = qkv.view(B, H, W, C) running_stripe_size, running_shift_size = self.attn_transform._get_stripe_info( x_size ) # cyclic shift if self.stripe_shift: qkv = torch.roll( qkv, shifts=(-running_shift_size[0], -running_shift_size[1]), dims=(1, 2), ) # partition windows qkv = window_partition(qkv, running_stripe_size) # nW*B, wh, ww, C qkv = qkv.view(-1, prod(running_stripe_size), C) # nW*B, wh*ww, C B_, N, _ = qkv.shape qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # attention x = self.attn(q, k, v, self.attn_transform, x_size) # merge windows x = x.view(-1, *running_stripe_size, C // 3) x = window_reverse(x, running_stripe_size, x_size) # B H W C/3 # reverse the shift if self.stripe_shift: x = torch.roll(x, shifts=running_shift_size, dims=(1, 2)) x = x.view(B, L, C // 3) return x def extra_repr(self) -> str: return ( f"stripe_size={self.stripe_size}, stripe_groups={self.stripe_groups}, stripe_shift={self.stripe_shift}, " f"pretrained_stripe_size={self.pretrained_stripe_size}, num_heads={self.num_heads}" ) def flops(self, N): # calculate flops for 1 window with token length of N flops = 0 # qkv = self.qkv(x) flops += N * self.dim * 3 * self.dim # attn = (q @ k.transpose(-2, -1)) flops += self.num_heads * N * (self.dim // self.num_heads) * N # x = (attn @ v) flops += self.num_heads * N * N * (self.dim // self.num_heads) # x = self.proj(x) flops += N * self.dim * self.dim return flops class AnchorStripeAttention(Attention): r"""Stripe attention Args: stripe_size (tuple[int]): The height and width of the stripe. num_heads (int): Number of attention heads. attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 pretrained_stripe_size (tuple[int]): The height and width of the stripe in pre-training. """ def __init__( self, input_resolution, stripe_size, stripe_groups, stripe_shift, num_heads, attn_drop=0.0, pretrained_stripe_size=[0, 0], anchor_window_down_factor=1, args=None, ): super(AnchorStripeAttention, self).__init__() self.input_resolution = input_resolution self.stripe_size = stripe_size # Wh, Ww self.stripe_groups = stripe_groups self.stripe_shift = stripe_shift self.num_heads = num_heads self.pretrained_stripe_size = pretrained_stripe_size self.anchor_window_down_factor = anchor_window_down_factor self.euclidean_dist = args.euclidean_dist self.attn_transform1 = AffineTransformStripe( num_heads, input_resolution, stripe_size, stripe_groups, stripe_shift, pretrained_stripe_size, anchor_window_down_factor, window_to_anchor=False, args=args, ) self.attn_transform2 = AffineTransformStripe( num_heads, input_resolution, stripe_size, stripe_groups, stripe_shift, pretrained_stripe_size, anchor_window_down_factor, window_to_anchor=True, args=args, ) self.attn_drop = nn.Dropout(attn_drop) self.softmax = nn.Softmax(dim=-1) def forward(self, qkv, anchor, x_size): """ Args: qkv: input features with shape of (B, L, C) anchor: x_size: use stripe_size to determine whether the relative positional bias table and index need to be regenerated. """ H, W = x_size B, L, C = qkv.shape qkv = qkv.view(B, H, W, C) stripe_size, shift_size = self.attn_transform1._get_stripe_info(x_size) anchor_stripe_size = [s // self.anchor_window_down_factor for s in stripe_size] anchor_shift_size = [s // self.anchor_window_down_factor for s in shift_size] # cyclic shift if self.stripe_shift: qkv = torch.roll(qkv, shifts=(-shift_size[0], -shift_size[1]), dims=(1, 2)) anchor = torch.roll( anchor, shifts=(-anchor_shift_size[0], -anchor_shift_size[1]), dims=(1, 2), ) # partition windows qkv = window_partition(qkv, stripe_size) # nW*B, wh, ww, C qkv = qkv.view(-1, prod(stripe_size), C) # nW*B, wh*ww, C anchor = window_partition(anchor, anchor_stripe_size) anchor = anchor.view(-1, prod(anchor_stripe_size), C // 3) B_, N1, _ = qkv.shape N2 = anchor.shape[1] qkv = qkv.reshape(B_, N1, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] anchor = anchor.reshape(B_, N2, self.num_heads, -1).permute(0, 2, 1, 3) # attention x = self.attn(anchor, k, v, self.attn_transform1, x_size, False) x = self.attn(q, anchor, x, self.attn_transform2, x_size) # merge windows x = x.view(B_, *stripe_size, C // 3) x = window_reverse(x, stripe_size, x_size) # B H' W' C # reverse the shift if self.stripe_shift: x = torch.roll(x, shifts=shift_size, dims=(1, 2)) x = x.view(B, H * W, C // 3) return x def extra_repr(self) -> str: return ( f"stripe_size={self.stripe_size}, stripe_groups={self.stripe_groups}, stripe_shift={self.stripe_shift}, " f"pretrained_stripe_size={self.pretrained_stripe_size}, num_heads={self.num_heads}, anchor_window_down_factor={self.anchor_window_down_factor}" ) def flops(self, N): # calculate flops for 1 window with token length of N flops = 0 # qkv = self.qkv(x) flops += N * self.dim * 3 * self.dim # attn = (q @ k.transpose(-2, -1)) flops += self.num_heads * N * (self.dim // self.num_heads) * N # x = (attn @ v) flops += self.num_heads * N * N * (self.dim // self.num_heads) # x = self.proj(x) flops += N * self.dim * self.dim return flops class SeparableConv(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size, stride, bias, args): m = [ nn.Conv2d( in_channels, in_channels, kernel_size, stride, kernel_size // 2, groups=in_channels, bias=bias, ) ] if args.separable_conv_act: m.append(nn.GELU()) m.append(nn.Conv2d(in_channels, out_channels, 1, 1, 0, bias=bias)) super(SeparableConv, self).__init__(*m) class QKVProjection(nn.Module): def __init__(self, dim, qkv_bias, proj_type, args): super(QKVProjection, self).__init__() self.proj_type = proj_type if proj_type == "linear": self.body = nn.Linear(dim, dim * 3, bias=qkv_bias) else: self.body = SeparableConv(dim, dim * 3, 3, 1, qkv_bias, args) def forward(self, x, x_size): if self.proj_type == "separable_conv": x = blc_to_bchw(x, x_size) x = self.body(x) if self.proj_type == "separable_conv": x = bchw_to_blc(x) return x class PatchMerging(nn.Module): r"""Patch Merging Layer. Args: dim (int): Number of input channels. """ def __init__(self, in_dim, out_dim): super().__init__() self.in_dim = in_dim self.out_dim = out_dim self.reduction = nn.Linear(4 * in_dim, out_dim, bias=False) def forward(self, x, x_size): """ x: B, H*W, C """ H, W = x_size B, L, C = x.shape assert L == H * W, "input feature has wrong size" assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." x = x.view(B, H, W, C) x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C x = self.reduction(x) return x class AnchorLinear(nn.Module): r"""Linear anchor projection layer Args: dim (int): Number of input channels. """ def __init__(self, in_channels, out_channels, down_factor, pooling_mode, bias): super().__init__() self.down_factor = down_factor if pooling_mode == "maxpool": self.pooling = nn.MaxPool2d(down_factor, down_factor) elif pooling_mode == "avgpool": self.pooling = nn.AvgPool2d(down_factor, down_factor) self.reduction = nn.Linear(in_channels, out_channels, bias=bias) def forward(self, x, x_size): """ x: B, H*W, C """ x = blc_to_bchw(x, x_size) x = bchw_to_blc(self.pooling(x)) x = blc_to_bhwc(self.reduction(x), [s // self.down_factor for s in x_size]) return x class AnchorProjection(nn.Module): def __init__(self, dim, proj_type, one_stage, anchor_window_down_factor, args): super(AnchorProjection, self).__init__() self.proj_type = proj_type self.body = nn.ModuleList([]) if one_stage: if proj_type == "patchmerging": m = PatchMerging(dim, dim // 2) elif proj_type == "conv2d": kernel_size = anchor_window_down_factor + 1 stride = anchor_window_down_factor padding = kernel_size // 2 m = nn.Conv2d(dim, dim // 2, kernel_size, stride, padding) elif proj_type == "separable_conv": kernel_size = anchor_window_down_factor + 1 stride = anchor_window_down_factor m = SeparableConv(dim, dim // 2, kernel_size, stride, True, args) elif proj_type.find("pool") >= 0: m = AnchorLinear( dim, dim // 2, anchor_window_down_factor, proj_type, True ) self.body.append(m) else: for i in range(int(math.log2(anchor_window_down_factor))): cin = dim if i == 0 else dim // 2 if proj_type == "patchmerging": m = PatchMerging(cin, dim // 2) elif proj_type == "conv2d": m = nn.Conv2d(cin, dim // 2, 3, 2, 1) elif proj_type == "separable_conv": m = SeparableConv(cin, dim // 2, 3, 2, True, args) self.body.append(m) def forward(self, x, x_size): if self.proj_type.find("conv") >= 0: x = blc_to_bchw(x, x_size) for m in self.body: x = m(x) x = bchw_to_bhwc(x) elif self.proj_type.find("pool") >= 0: for m in self.body: x = m(x, x_size) else: for i, m in enumerate(self.body): x = m(x, [s // 2**i for s in x_size]) x = blc_to_bhwc(x, [s // 2 ** (i + 1) for s in x_size]) return x class MixedAttention(nn.Module): r"""Mixed window attention and stripe attention Args: dim (int): Number of input channels. stripe_size (tuple[int]): The height and width of the stripe. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 pretrained_stripe_size (tuple[int]): The height and width of the stripe in pre-training. """ def __init__( self, dim, input_resolution, num_heads_w, num_heads_s, window_size, window_shift, stripe_size, stripe_groups, stripe_shift, qkv_bias=True, qkv_proj_type="linear", anchor_proj_type="separable_conv", anchor_one_stage=True, anchor_window_down_factor=1, attn_drop=0.0, proj_drop=0.0, pretrained_window_size=[0, 0], pretrained_stripe_size=[0, 0], args=None, ): super(MixedAttention, self).__init__() self.dim = dim self.input_resolution = input_resolution self.use_anchor = anchor_window_down_factor > 1 self.args = args # print(args) self.qkv = QKVProjection(dim, qkv_bias, qkv_proj_type, args) if self.use_anchor: # anchor is only used for stripe attention self.anchor = AnchorProjection( dim, anchor_proj_type, anchor_one_stage, anchor_window_down_factor, args ) self.window_attn = WindowAttention( input_resolution, window_size, num_heads_w, window_shift, attn_drop, pretrained_window_size, args, ) if self.args.double_window: self.stripe_attn = WindowAttention( input_resolution, window_size, num_heads_w, window_shift, attn_drop, pretrained_window_size, args, ) else: if self.use_anchor: self.stripe_attn = AnchorStripeAttention( input_resolution, stripe_size, stripe_groups, stripe_shift, num_heads_s, attn_drop, pretrained_stripe_size, anchor_window_down_factor, args, ) else: if self.args.stripe_square: self.stripe_attn = StripeAttention( input_resolution, window_size, [None, None], window_shift, num_heads_s, attn_drop, pretrained_stripe_size, args, ) else: self.stripe_attn = StripeAttention( input_resolution, stripe_size, stripe_groups, stripe_shift, num_heads_s, attn_drop, pretrained_stripe_size, args, ) if self.args.out_proj_type == "linear": self.proj = nn.Linear(dim, dim) else: self.proj = nn.Conv2d(dim, dim, 3, 1, 1) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, x_size): """ Args: x: input features with shape of (B, L, C) stripe_size: use stripe_size to determine whether the relative positional bias table and index need to be regenerated. """ B, L, C = x.shape # qkv projection qkv = self.qkv(x, x_size) qkv_window, qkv_stripe = torch.split(qkv, C * 3 // 2, dim=-1) # anchor projection if self.use_anchor: anchor = self.anchor(x, x_size) # attention x_window = self.window_attn(qkv_window, x_size) if self.use_anchor: x_stripe = self.stripe_attn(qkv_stripe, anchor, x_size) else: x_stripe = self.stripe_attn(qkv_stripe, x_size) x = torch.cat([x_window, x_stripe], dim=-1) # output projection if self.args.out_proj_type == "linear": x = self.proj(x) else: x = blc_to_bchw(x, x_size) x = bchw_to_blc(self.proj(x)) x = self.proj_drop(x) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}" def flops(self, N): # calculate flops for 1 window with token length of N flops = 0 # qkv = self.qkv(x) flops += N * self.dim * 3 * self.dim # attn = (q @ k.transpose(-2, -1)) flops += self.num_heads * N * (self.dim // self.num_heads) * N # x = (attn @ v) flops += self.num_heads * N * N * (self.dim // self.num_heads) # x = self.proj(x) flops += N * self.dim * self.dim return flops class ChannelAttention(nn.Module): """Channel attention used in RCAN. Args: num_feat (int): Channel number of intermediate features. reduction (int): Channel reduction factor. Default: 16. """ def __init__(self, num_feat, reduction=16): super(ChannelAttention, self).__init__() self.attention = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(num_feat, num_feat // reduction, 1, padding=0), nn.ReLU(inplace=True), nn.Conv2d(num_feat // reduction, num_feat, 1, padding=0), nn.Sigmoid(), ) def forward(self, x): y = self.attention(x) return x * y class CAB(nn.Module): def __init__(self, num_feat, compress_ratio=4, reduction=18): super(CAB, self).__init__() self.cab = nn.Sequential( nn.Conv2d(num_feat, num_feat // compress_ratio, 3, 1, 1), nn.GELU(), nn.Conv2d(num_feat // compress_ratio, num_feat, 3, 1, 1), ChannelAttention(num_feat, reduction), ) def forward(self, x, x_size): x = self.cab(blc_to_bchw(x, x_size).contiguous()) return bchw_to_blc(x) class MixAttnTransformerBlock(nn.Module): r"""Mix attention transformer block with shared QKV projection and output projection for mixed attention modules. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resulotion. num_heads (int): Number of attention heads. window_size (int): Window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm pretrained_stripe_size (int): Window size in pre-training. attn_type (str, optional): Attention type. Default: cwhv. c: residual blocks w: window attention h: horizontal stripe attention v: vertical stripe attention """ def __init__( self, dim, input_resolution, num_heads_w, num_heads_s, window_size=7, window_shift=False, stripe_size=[8, 8], stripe_groups=[None, None], stripe_shift=False, stripe_type="H", mlp_ratio=4.0, qkv_bias=True, qkv_proj_type="linear", anchor_proj_type="separable_conv", anchor_one_stage=True, anchor_window_down_factor=1, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, pretrained_window_size=[0, 0], pretrained_stripe_size=[0, 0], res_scale=1.0, args=None, ): super().__init__() self.dim = dim self.input_resolution = input_resolution self.num_heads_w = num_heads_w self.num_heads_s = num_heads_s self.window_size = window_size self.window_shift = window_shift self.stripe_shift = stripe_shift self.stripe_type = stripe_type self.args = args if self.stripe_type == "W": self.stripe_size = stripe_size[::-1] self.stripe_groups = stripe_groups[::-1] else: self.stripe_size = stripe_size self.stripe_groups = stripe_groups self.mlp_ratio = mlp_ratio self.res_scale = res_scale self.attn = MixedAttention( dim, input_resolution, num_heads_w, num_heads_s, window_size, window_shift, self.stripe_size, self.stripe_groups, stripe_shift, qkv_bias, qkv_proj_type, anchor_proj_type, anchor_one_stage, anchor_window_down_factor, attn_drop, drop, pretrained_window_size, pretrained_stripe_size, args, ) self.norm1 = norm_layer(dim) if self.args.local_connection: self.conv = CAB(dim) # self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() # self.mlp = Mlp( # in_features=dim, # hidden_features=int(dim * mlp_ratio), # act_layer=act_layer, # drop=drop, # ) # self.norm2 = norm_layer(dim) def forward(self, x, x_size): # Mixed attention if self.args.local_connection: x = ( x + self.res_scale * self.drop_path(self.norm1(self.attn(x, x_size))) + self.conv(x, x_size) ) else: x = x + self.res_scale * self.drop_path(self.norm1(self.attn(x, x_size))) # FFN x = x + self.res_scale * self.drop_path(self.norm2(self.mlp(x))) # return x def extra_repr(self) -> str: return ( f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads=({self.num_heads_w}, {self.num_heads_s}), " f"window_size={self.window_size}, window_shift={self.window_shift}, " f"stripe_size={self.stripe_size}, stripe_groups={self.stripe_groups}, stripe_shift={self.stripe_shift}, self.stripe_type={self.stripe_type}, " f"mlp_ratio={self.mlp_ratio}, res_scale={self.res_scale}" ) # def flops(self): # flops = 0 # H, W = self.input_resolution # # norm1 # flops += self.dim * H * W # # W-MSA/SW-MSA # nW = H * W / self.stripe_size[0] / self.stripe_size[1] # flops += nW * self.attn.flops(self.stripe_size[0] * self.stripe_size[1]) # # mlp # flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio # # norm2 # flops += self.dim * H * W # return flops