# -*- coding: utf-8 -*- import sys import os import torch # Import important files root_path = os.path.abspath('.') sys.path.append(root_path) from architecture.rrdb import RRDBNet from train_code.train_master import train_master # Mixed precision training scaler = torch.cuda.amp.GradScaler() class train_esrnet(train_master): def __init__(self, options, args) -> None: super().__init__(options, args, "esrnet") # Pass a model name unique code def loss_init(self): # Prepare pixel loss self.pixel_loss_load() def call_model(self): # Generator Prepare (Don't formet torch.compile if needed) self.generator = RRDBNet(3, 3, scale=self.options['scale'], num_block=self.options['ESR_blocks_num']).cuda() # self.generator = torch.compile(self.generator).cuda() self.generator.train() def run(self): self.master_run() def calculate_loss(self, gen_hr, imgs_hr): # Generator pixel loss (l1 loss): generated vs. GT l_g_pix = self.cri_pix(gen_hr, imgs_hr, self.batch_idx) self.weight_store["pixel_loss"] = l_g_pix self.generator_loss += l_g_pix def tensorboard_report(self, iteration): # self.writer.add_scalar('Loss/train-Generator_Loss-Iteration', self.generator_loss, iteration) self.writer.add_scalar('Loss/train-Pixel_Loss-Iteration', self.weight_store["pixel_loss"], iteration)