import math from math import prod import torch import torch.nn as nn import torch.nn.functional as F from architecture.grl_common.ops import ( calculate_mask, get_relative_coords_table, get_relative_position_index, window_partition, window_reverse, ) from architecture.grl_common.swin_v1_block import Mlp from timm.models.layers import DropPath, to_2tuple class WindowAttentionV2(nn.Module): r"""Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: dim (int): Number of input channels. window_size (tuple[int]): The height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 pretrained_window_size (tuple[int]): The height and width of the window in pre-training. """ def __init__( self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0.0, proj_drop=0.0, pretrained_window_size=[0, 0], use_pe=True, ): super().__init__() self.dim = dim self.window_size = window_size # Wh, Ww self.pretrained_window_size = pretrained_window_size self.num_heads = num_heads self.use_pe = use_pe self.logit_scale = nn.Parameter( torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True ) if self.use_pe: # mlp to generate continuous relative position bias self.cpb_mlp = nn.Sequential( nn.Linear(2, 512, bias=True), nn.ReLU(inplace=True), nn.Linear(512, num_heads, bias=False), ) table = get_relative_coords_table(window_size, pretrained_window_size) index = get_relative_position_index(window_size) self.register_buffer("relative_coords_table", table) self.register_buffer("relative_position_index", index) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) # self.qkv = nn.Linear(dim, dim * 3, bias=False) # if qkv_bias: # self.q_bias = nn.Parameter(torch.zeros(dim)) # self.v_bias = nn.Parameter(torch.zeros(dim)) # else: # self.q_bias = None # self.v_bias = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.softmax = nn.Softmax(dim=-1) def forward(self, x, mask=None): """ Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None """ B_, N, C = x.shape # qkv projection # qkv_bias = None # if self.q_bias is not None: # qkv_bias = torch.cat( # ( # self.q_bias, # torch.zeros_like(self.v_bias, requires_grad=False), # self.v_bias, # ) # ) # qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) qkv = self.qkv(x) qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # cosine attention map attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1) logit_scale = torch.clamp(self.logit_scale, max=math.log(1.0 / 0.01)).exp() attn = attn * logit_scale # positional encoding if self.use_pe: bias_table = self.cpb_mlp(self.relative_coords_table) bias_table = bias_table.view(-1, self.num_heads) win_dim = prod(self.window_size) bias = bias_table[self.relative_position_index.view(-1)] bias = bias.view(win_dim, win_dim, -1).permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww bias = 16 * torch.sigmoid(bias) attn = attn + bias.unsqueeze(0) # shift attention mask if mask is not None: nW = mask.shape[0] mask = mask.unsqueeze(1).unsqueeze(0) attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask attn = attn.view(-1, self.num_heads, N, N) # attention attn = self.softmax(attn) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B_, N, C) # output projection x = self.proj(x) x = self.proj_drop(x) return x def extra_repr(self) -> str: return ( f"dim={self.dim}, window_size={self.window_size}, " f"pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}" ) def flops(self, N): # calculate flops for 1 window with token length of N flops = 0 # qkv = self.qkv(x) flops += N * self.dim * 3 * self.dim # attn = (q @ k.transpose(-2, -1)) flops += self.num_heads * N * (self.dim // self.num_heads) * N # x = (attn @ v) flops += self.num_heads * N * N * (self.dim // self.num_heads) # x = self.proj(x) flops += N * self.dim * self.dim return flops class WindowAttentionWrapperV2(WindowAttentionV2): def __init__(self, shift_size, input_resolution, **kwargs): super(WindowAttentionWrapperV2, self).__init__(**kwargs) self.shift_size = shift_size self.input_resolution = input_resolution if self.shift_size > 0: attn_mask = calculate_mask(input_resolution, self.window_size, shift_size) else: attn_mask = None self.register_buffer("attn_mask", attn_mask) def forward(self, x, x_size): H, W = x_size B, L, C = x.shape x = x.view(B, H, W, C) # cyclic shift if self.shift_size > 0: x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) # partition windows x = window_partition(x, self.window_size) # nW*B, wh, ww, C x = x.view(-1, prod(self.window_size), C) # nW*B, wh*ww, C # W-MSA/SW-MSA if self.input_resolution == x_size: attn_mask = self.attn_mask else: attn_mask = calculate_mask(x_size, self.window_size, self.shift_size) attn_mask = attn_mask.to(x.device) # attention x = super(WindowAttentionWrapperV2, self).forward(x, mask=attn_mask) # nW*B, wh*ww, C # merge windows x = x.view(-1, *self.window_size, C) x = window_reverse(x, self.window_size, x_size) # B, H, W, C # reverse cyclic shift if self.shift_size > 0: x = torch.roll(x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) x = x.view(B, H * W, C) return x class SwinTransformerBlockV2(nn.Module): r"""Swin Transformer Block. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resulotion. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm pretrained_window_size (int): Window size in pre-training. """ def __init__( self, dim, input_resolution, num_heads, window_size=7, shift_size=0, mlp_ratio=4.0, qkv_bias=True, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, pretrained_window_size=0, use_pe=True, res_scale=1.0, ): super().__init__() self.dim = dim self.input_resolution = input_resolution self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio if min(self.input_resolution) <= self.window_size: # if window size is larger than input resolution, we don't partition windows self.shift_size = 0 self.window_size = min(self.input_resolution) assert ( 0 <= self.shift_size < self.window_size ), "shift_size must in 0-window_size" self.res_scale = res_scale self.attn = WindowAttentionWrapperV2( shift_size=self.shift_size, input_resolution=self.input_resolution, dim=dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, pretrained_window_size=to_2tuple(pretrained_window_size), use_pe=use_pe, ) self.norm1 = norm_layer(dim) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.mlp = Mlp( in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop, ) self.norm2 = norm_layer(dim) def forward(self, x, x_size): # Window attention x = x + self.res_scale * self.drop_path(self.norm1(self.attn(x, x_size))) # FFN x = x + self.res_scale * self.drop_path(self.norm2(self.mlp(x))) return x def extra_repr(self) -> str: return ( f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}, res_scale={self.res_scale}" ) def flops(self): flops = 0 H, W = self.input_resolution # norm1 flops += self.dim * H * W # W-MSA/SW-MSA nW = H * W / self.window_size / self.window_size flops += nW * self.attn.flops(self.window_size * self.window_size) # mlp flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio # norm2 flops += self.dim * H * W return flops