#!/usr/bin/env python
from __future__ import annotations
import spaces
import gradio as gr
import torch
import PIL.Image
import numpy as np
from app_canny import create_demo as create_demo_canny
from app_depth import create_demo as create_demo_depth
from app_ip2p import create_demo as create_demo_ip2p
from app_lineart import create_demo as create_demo_lineart
from app_mlsd import create_demo as create_demo_mlsd
from app_normal import create_demo as create_demo_normal
from app_normal_old import create_demo as create_demo_normal_old
from app_openpose import create_demo as create_demo_openpose
from app_scribble import create_demo as create_demo_scribble
from app_scribble_interactive import create_demo as create_demo_scribble_interactive
from app_segmentation import create_demo as create_demo_segmentation
from app_shuffle import create_demo as create_demo_shuffle
from app_softedge import create_demo as create_demo_softedge
from app_tile import create_demo as create_demo_tile
from model import Model
from settings import ALLOW_CHANGING_BASE_MODEL, DEFAULT_MODEL_ID, SHOW_DUPLICATE_BUTTON
DESCRIPTION = r"""
ControlLoRA Version 3: LoRA Is All You Need to Control the Spatial Information of Stable Diffusion
[Models]
[Github]
***Note:*** I used a high learning rate and a short number of steps for training, and the dataset was also generated,
so the generation results may not be very good.
It is recommended that researchers use real data, lower learning and longer training steps to train to achieve better generation results.
"""
model = Model(base_model_id=DEFAULT_MODEL_ID, task_name="Canny")
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=SHOW_DUPLICATE_BUTTON,
)
with gr.Tabs():
with gr.TabItem("Canny"):
create_demo_canny(spaces.GPU(model.process_canny))
# with gr.TabItem("MLSD"):
# create_demo_mlsd(spaces.GPU(model.process_mlsd))
# with gr.TabItem("Scribble"):
# create_demo_scribble(spaces.GPU(model.process_scribble))
# with gr.TabItem("Scribble Interactive"):
# create_demo_scribble_interactive(spaces.GPU(model.process_scribble_interactive))
# with gr.TabItem("SoftEdge"):
# create_demo_softedge(spaces.GPU(model.process_softedge))
with gr.TabItem("OpenPose"):
create_demo_openpose(spaces.GPU(model.process_openpose))
with gr.TabItem("Segmentation"):
create_demo_segmentation(spaces.GPU(model.process_segmentation))
with gr.TabItem("Depth"):
create_demo_depth(spaces.GPU(model.process_depth))
# with gr.TabItem("Normal map"):
# create_demo_normal(spaces.GPU(model.process_normal))
with gr.TabItem("Normal map (old)"):
create_demo_normal_old(spaces.GPU(model.process_normal_old))
# with gr.TabItem("Lineart"):
# create_demo_lineart(spaces.GPU(model.process_lineart))
# with gr.TabItem("Content Shuffle"):
# create_demo_shuffle(spaces.GPU(model.process_shuffle))
# with gr.TabItem("Instruct Pix2Pix"):
# create_demo_ip2p(spaces.GPU(model.process_ip2p))
with gr.TabItem("Tile"):
create_demo_tile(spaces.GPU(model.process_tile))
with gr.Accordion(label="Base model", open=False):
with gr.Row():
with gr.Column(scale=5):
current_base_model = gr.Text(label="Current base model")
with gr.Column(scale=1):
check_base_model_button = gr.Button("Check current base model")
with gr.Row():
with gr.Column(scale=5):
new_base_model_id = gr.Text(
label="New base model",
max_lines=1,
placeholder="SG161222/Realistic_Vision_V4.0_noVAE",
info="The base model must be compatible with Stable Diffusion v1.5.",
interactive=ALLOW_CHANGING_BASE_MODEL,
)
with gr.Column(scale=1):
change_base_model_button = gr.Button("Change base model", interactive=ALLOW_CHANGING_BASE_MODEL)
if not ALLOW_CHANGING_BASE_MODEL:
gr.Markdown(
"""The base model is not allowed to be changed in this Space so as not to slow down the demo, but it can be changed if you duplicate the Space."""
)
check_base_model_button.click(
fn=lambda: model.base_model_id,
outputs=current_base_model,
queue=False,
api_name="check_base_model",
)
gr.on(
triggers=[new_base_model_id.submit, change_base_model_button.click],
fn=model.set_base_model,
inputs=new_base_model_id,
outputs=current_base_model,
api_name=False,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()