from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool import datetime import requests import pytz import yaml from tools.final_answer import FinalAnswerTool from Gradio_UI import GradioUI from bs4 import BeautifulSoup import arxiv from PyPDF2 import PdfReader from xml.etree import ElementTree import io # Below is an example of a tool that does nothing. Amaze us with your creativity ! @tool def get_top_paper()-> str: """A tool that fetches the most upvoted paper on Hugging Face daily papers. """ url = "https://huggingface.co/papers" try: res = requests.get(url) res.raise_for_status() # Parse the HTML response soup = BeautifulSoup(response.text, "html.parser") #inspect h3 the selector top_paper = soup.find("h3") if top_paper_element: return top_paper.text.strip() else: return "Paper not found" except Exception as e: return f"Error fetching top paper: {str(e)}" @tool def get_paper_link(title:str)->str: """ A Tool that finds the Hugging Face paper link given its title. Args: title: A string representing the title of the paper (eg., 'Competitive Programming with Large Reasoning Models'). """ url = "https://huggingface.co/papers" try: res = requests.get(url) res.raise_for_status() soup = BeautifulSoup(response.text, "html.parser") paper_links = soup.find("h3") for paper in paper_links: if paper.text.strip() == title: return "https://huggingface.co" + paper["href"] return "Paper link not found." except Exception as e: return f"Error fetching paper link: {str(e)}" @tool def get_paper_content(link:str)->str: """ A tool that reads the first four pages of a paper and returns its content as a string given its link. Args: link: A string representing the URL of the paper (eg., 'https://huggingface.co/papers/2502.06807'). """ try: #Get the id from the Hugging face URL paper_id = link.split("/papers/")[-1] paper = next(arxiv.Client().results(arxiv.Search(id_list=[paper_id]))) #Get the PDF URL of the paper from arXiv pdf_url = paper.entry_id.replace("abs", "pdf") + ".pdf" response = requests.get(pdf_url) response.raise_for_status() pdf_buffer = io.BytesIO(response.content) # Extract text from the first four pages content = "" reader = PdfReader(pdf_buffer) pages = reader.pages[:4] for page in pages: content += page.extract_text() or "" return content.strip() except Exception as e: return f"Error reading paper: {str(e)}" @tool def get_related_papers(title:str, max_results:int)->list: """ A tool that searches for related papers on arXiv based on the title of the query paper. Args: title: A string representing the title of the query paper to find related papers for. max_results: A integer representing the number of related papers to return. Returns: list: A list of dictionaries, each containing a related paper's title and URL. """ try: search_url = f"http://export.arxiv.org/api/query?search_query=title:{title}&start=0&max_results={max_results}" resp = requests.get(search_url) if resp.status_code != 200: return f"Error: Failed to retrieve papers from arXiv. Status code: {response.status_code}" root = ElementTree.fromstring(resp.text) papers = [] for entry in root.findall("{http://www.w3.org/2005/Atom}entry"): paper_title = entry.find("{http://www.w3.org/2005/Atom}title").text paper_url = entry.find("{http://www.w3.org/2005/Atom}id").text papers.append({"title": paper_title, "url": paper_url}) return papers except Exception as e: return f"Error: {str(e)}" final_answer = FinalAnswerTool() model = HfApiModel( max_tokens=2096, temperature=0.5, model_id='https://wxknx1kg971u7k1n.us-east-1.aws.endpoints.huggingface.cloud', custom_role_conversions=None, ) with open("prompts.yaml", 'r') as stream: prompt_templates = yaml.safe_load(stream) agent = CodeAgent( model=model, tools=[final_answer,get_top_paper,get_paper_link,get_paper_content,get_related_papers], ## add your tools here (don't remove final answer) max_steps=6, verbosity_level=1, grammar=None, planning_interval=None, name=None, description=None, prompt_templates=prompt_templates ) GradioUI(agent).launch()