import os import json import datetime import requests from email.utils import parseaddr import gradio as gr import pandas as pd import numpy as np from datasets import load_dataset, VerificationMode from apscheduler.schedulers.background import BackgroundScheduler from huggingface_hub import HfApi from sentence_transformers import SentenceTransformer from transformers import AutoTokenizer, AutoModelForCausalLM # InfoStrings #from scorer import question_scorer from content import format_error, format_warning, format_log, TITLE, INTRODUCTION_TEXT, DATA_TEXT, SUBMISSION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, model_hyperlink TOKEN = os.environ.get("TOKEN", None) OWNER="Blanca" DATA_DATASET = f"{OWNER}/CQs-Gen_test_embeddings" INTERNAL_DATA_DATASET = f"{OWNER}/CQs-Gen_test_embeddings" SUBMISSION_DATASET = f"{OWNER}/submissions_internal" #SUBMISSION_DATASET_PUBLIC = f"{OWNER}/submissions_public" #CONTACT_DATASET = f"{OWNER}/contact_info" # TODO: I should reactivate this RESULTS_DATASET = f"{OWNER}/results_public" LEADERBOARD_PATH = f"HiTZ/Critical_Questions_Leaderboard" METRIC = 'similarity' api = HfApi() if METRIC == 'similarity': similarity_model = SentenceTransformer("stsb-mpnet-base-v2") if METRIC == 'gemma': # WARNING: this can't be used because I do not have GPU in HF model = AutoModelForCausalLM.from_pretrained('google/gemma-3-12b-it', device_map="auto", attn_implementation='eager') tokenizer = AutoTokenizer.from_pretrained('google/gemma-3-12b-it') YEAR_VERSION = "2025" #ref_scores_len = {"test": 32} os.makedirs("scored", exist_ok=True) # Should be False on spaces and True outside LOCAL_DEBUG = False #not (os.environ.get("system") == "spaces") # Display the results eval_results = {} eval_results['test'] = load_dataset( RESULTS_DATASET, YEAR_VERSION, split="test", token=TOKEN, download_mode="force_redownload", verification_mode=VerificationMode.NO_CHECKS, trust_remote_code=True, ) # TODO: I should reactivate saving contact infos #contact_infos = load_dataset(CONTACT_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", verification_mode=VerificationMode.NO_CHECKS, trust_remote_code=True) def get_dataframe_from_results(eval_results, split): local_df = eval_results[split] local_df = local_df.map(lambda row: {"model": model_hyperlink(row["url"], row["model"])}) local_df = local_df.remove_columns(["system_prompt", "url"]) local_df = local_df.rename_column("model", "Submission name") local_df = local_df.rename_column("model_family", "Model family") local_df = local_df.rename_column("organisation", "Authors") local_df = local_df.rename_column("score", "Score (%)") local_df = local_df.rename_column("NAE", "NAE (%)") local_df = local_df.rename_column("date", "Submission date") df = pd.DataFrame(local_df) df = df.sort_values(by=["Score (%)"], ascending=False) return df eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test") # Gold answers gold_results = {} gold_dataset = load_dataset(INTERNAL_DATA_DATASET, "test", token=TOKEN, trust_remote_code=True)['test'] def restart_space(): api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN) TYPES = ["markdown", "number", "number", "number", "number", "str", "str", "str"] def run_model(model, tokenizer, prompt): chat = [{"role": "user", "content": prompt}] chat_formated = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) #print(chat_formated, flush=True) inputs = tokenizer(chat_formated, return_tensors="pt") inputs = inputs.to('cuda') generated_ids = model.generate(**inputs, max_new_tokens=512) out = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] try: output = out.split('model\n')[1].replace('\n', '') except IndexError: print('EVAL ERROR: '+output, flush=True) output = output.strip() return output def get_prompts(cq, references): return { 'compare': f"""You will be given a set of reference questions, each with an identifying ID, and a newly generated question. Your task is to determine if any of the reference questions are asking for the same information as the new question. Here is the set of reference questions with their IDs: {references} Here is the newly generated question: {cq} Compare the new question to each of the reference questions. Look for questions that are asking for the same information, even if they are worded differently. Consider the core meaning and intent of each question, not just the exact wording. If you find a reference question that is asking for the same information as the new question, output only the ID of that reference question. If none of the reference questions are asking for the same information as the new question, output exactly 'Similar reference not found.' (without quotes). Your final output should consist of only one of the following: 1. The ID of the most similar reference question 2. The exact phrase 'Similar reference not found.' Do not include any explanation, reasoning, or additional text in your output."""} def call_start(): return format_log("We are starting your evaluation. This can take a few minutes.") def add_new_eval( model: str, model_family: str, system_prompt: str, url: str, path_to_file: str, organisation: str, mail: str, profile: gr.OAuthProfile, ): # Was the profile created less than 2 month ago? user_data = requests.get(f"https://huggingface.co/api/users/{profile.username}/overview") creation_date = json.loads(user_data.content)["createdAt"] if datetime.datetime.now() - datetime.datetime.strptime(creation_date, '%Y-%m-%dT%H:%M:%S.%fZ') < datetime.timedelta(days=60): return format_error("This account is not authorized to submit on this leaderboard.") # TODO: I should reactivate this check #contact_infos = load_dataset(CONTACT_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", verification_mode=VerificationMode.NO_CHECKS, trust_remote_code=True) #user_submission_dates = sorted(row["date"] for row in contact_infos[val_or_test] if row["username"] == profile.username) #if len(user_submission_dates) > 0 and user_submission_dates[-1] == datetime.datetime.today().strftime('%Y-%m-%d'): # return format_error("You already submitted once today, please try again tomorrow.") val_or_test = "test" is_validation = False # Very basic email parsing _, parsed_mail = parseaddr(mail) if not "@" in parsed_mail: return format_warning("Please provide a valid email adress.") # Check if the combination model/org already exists and prints a warning message if yes if model.lower() in set([m.lower() for m in eval_results[val_or_test]["model"]]) and organisation.lower() in set([o.lower() for o in eval_results[val_or_test]["organisation"]]): return format_warning("This model has been already submitted.") if path_to_file is None: return format_warning("Please attach a file.") # SAVE UNSCORED SUBMISSION if LOCAL_DEBUG: print("mock uploaded submission") else: api.upload_file( repo_id=SUBMISSION_DATASET, path_or_fileobj=path_to_file.name, path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_{val_or_test}_raw_{datetime.datetime.today()}.json", repo_type="dataset", token=TOKEN ) # SAVE CONTACT contact_info = { "model": model, "model_family": model_family, "url": url, "organisation": organisation, "username": profile.username, "mail": mail, "date": datetime.datetime.today().strftime('%Y-%m-%d') } # TODO: reactivate this #contact_infos[val_or_test]= contact_infos[val_or_test].add_item(contact_info) #if LOCAL_DEBUG: # print("mock uploaded contact info") #else: # contact_infos.push_to_hub(CONTACT_DATASET, config_name = YEAR_VERSION, token=TOKEN) # SCORE SUBMISSION file_path = path_to_file.name scores = 0 num_questions = 0 task_ids = [] call_start() with open(f"scored/{organisation}_{model}.jsonl", "w") as scored_file: with open(file_path, 'r') as f: data = json.load(f) scores = [] nae = 0 num_cqs = 0 for id_to_eval, line in data.items(): # data to evaluate intervention_score = 0 for indx, intervention_id in enumerate(gold_dataset['intervention_id']): # references if id_to_eval == intervention_id: references = gold_dataset['cqs'] reference_embeddings = [row['embedding'] for row in references[indx]] # TODO: here upload the embedding that I have saved, so they can be used in similarity evaluation #print(reference_set, flush=True) if len(line['cqs']) < 3 or type(line['cqs']) is not list: # make sure there are at least 3 cqs num_cqs += 3 #return format_warning("Make sure that there are at least 3 questions per intervention, or check that the format is right.") continue for cq in line['cqs'][:3]: # here only take the first 3 cqs if type(cq) is not dict: num_cqs += 1 continue cq_text = cq['cq'] if METRIC == 'similarity': sentence_embedding = similarity_model.encode(cq_text) #reference_embedding = similarity_model.encode(reference_set) # TODO: here have the embeddings directly, do no calculate each time sims = similarity_model.similarity(sentence_embedding, reference_embeddings).tolist()[0] winner = np.argmax(sims) # make sure the similarity of the winning reference sentence is at least 0.65 if sims[winner] > 0.65: label = references[indx][winner]['label'] else: label = 'not_able_to_evaluate' if METRIC == 'gemma': prompts = get_prompts(cq_text, '\n'.join(reference_set)) winner = run_model(model, tokenizer, prompts['compare']) try: # here make sure the output is the id of a reference cq if winner.strip() != 'Similar reference not found.': label = references[index][int(winner)]['label'] else: label = 'not_able_to_evaluate' print(winner, flush=True) except IndexError: label = 'evaluation_issue' print(winner, flush=True) except ValueError: label = 'evaluation_issue' print(winner, flush=True) #print(label, flush=True) num_cqs += 1 if label == 'Useful': intervention_score += 1/3 if label == 'not_able_to_evaluate': nae += 1 #print(id_to_eval, intervention_score, flush=True) scores.append(intervention_score) scored_file.write( json.dumps({ "id": intervention_id, #"model_answer": answer, "score": intervention_score }) + "\n" ) task_ids.append(id_to_eval) #scores += score #num_questions += 1 #break #return format_error(score) nae_score = round(nae/num_cqs*100, 1) score = round(sum(scores)/len(scores)*100,3) #print(score, flush=True) #print(task_ids, flush=True) # Check if there's any duplicate in the submission if len(task_ids) != len(set(task_ids)): return format_error("There are duplicates in your submission. Please check your file and resubmit it.") # SAVE SCORED SUBMISSION if LOCAL_DEBUG: print("mock uploaded scored submission") else: api.upload_file( repo_id=SUBMISSION_DATASET, path_or_fileobj=f"scored/{organisation}_{model}.jsonl", path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_{val_or_test}_scored_{datetime.datetime.today()}.jsonl", repo_type="dataset", token=TOKEN ) # SAVE TO LEADERBOARD DATA eval_entry = { "model": model, "model_family": model_family, "system_prompt": system_prompt, "url": url, "organisation": organisation, "score": score, #s / ref_scores_len,#[val_or_test], "NAE": nae_score, "date": datetime.datetime.today().strftime('%Y-%m-%d') } #TODO: if I find potential errors, I should check them here and maybe suggest that they open a discussion # TODO: I should reactivate this # Testing for duplicates - to see if we want to add something like it as it would allow people to try to see the content of other submissions #eval_entry_no_date = {k: v for k, v in eval_entry if k != "date"} #columns_no_date = [c for c in eval_results[val_or_test].column_names if c != "date"] #if eval_entry_no_date in eval_results[val_or_test].select_columns(columns_no_date): # return format_error(f"Your submission is an exact duplicate from an existing submission.") eval_results[val_or_test] = eval_results[val_or_test].add_item(eval_entry) print(eval_results) if LOCAL_DEBUG: print("mock uploaded results to lb") else: eval_results[val_or_test].push_to_hub(RESULTS_DATASET, config_name = YEAR_VERSION, token=TOKEN) return format_log(f"Submission {model} submitted by {organisation} successfully.\nPlease refresh the leaderboard to see your score displayed.") def refresh(): eval_results['test'] = load_dataset( RESULTS_DATASET, YEAR_VERSION, split="test", token=TOKEN, download_mode="force_redownload", verification_mode=VerificationMode.NO_CHECKS, trust_remote_code=True, ) eval_dataframe_test = get_dataframe_from_results(eval_results={"test": eval_results['test']}, split="test") return eval_dataframe_test def upload_file(files): file_paths = [file.name for file in files] return file_paths demo = gr.Blocks() with demo: gr.HTML(TITLE) gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") #with gr.Row(): # with gr.Column(scale=1, min_width=0): # pass # gr.Image( # value="examples.png", # label="Example", # interactive=False, # show_label=False, # show_download_button=False, # show_share_button=False # ) # with gr.Column(scale=1, min_width=0): # pass gr.Markdown(DATA_TEXT, elem_classes="markdown-text") with gr.Tab("Results: Test"): leaderboard_table_test = gr.components.Dataframe( value=eval_dataframe_test, datatype=TYPES, interactive=False, column_widths=["20%"] ) refresh_button = gr.Button("Refresh") refresh_button.click(refresh, inputs=[], outputs=[leaderboard_table_test]) with gr.Accordion(""): with gr.Row(): gr.Markdown(SUBMISSION_TEXT, elem_classes="markdown-text") with gr.Row(): with gr.Column(): level_of_test = gr.Radio(["test"], value="test", label="Split") model_name_textbox = gr.Textbox(label="Submission name") model_family_textbox = gr.Textbox(label="Model family") system_prompt_textbox = gr.Textbox(label="System prompt example") url_textbox = gr.Textbox(label="Url to submission information") with gr.Column(): organisation = gr.Textbox(label="Team name") mail = gr.Textbox(label="Contact email (will be stored privately, & used if there is an issue with your submission)") file_output = gr.File() with gr.Row(): gr.LoginButton() submit_button = gr.Button("Submit Eval") status = gr.Label(label="Status") submission_result = gr.Markdown() submit_button.click( fn=lambda: "⏳ Submitting...", inputs=None, outputs=status, ).then( add_new_eval, [ model_name_textbox, model_family_textbox, system_prompt_textbox, url_textbox, file_output, organisation, mail ], submission_result, ) with gr.Row(): with gr.Accordion("📙 Citation", open=True): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, elem_id="citation-button", lines=8, max_lines=10, show_copy_button=True, ) scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=3600) scheduler.start() demo.launch(debug=True)