import gradio as gr import joblib import numpy as np import pandas as pd from huggingface_hub import hf_hub_download from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelEncoder # Load the trained model and scaler objects from file REPO_ID = "Hemg/modelxxx" # hugging face repo ID MoDEL_FILENAME = "studentpredict.joblib" # model file name SCALER_FILENAME ="studentscaler.joblib" # scaler file name model = joblib.load(hf_hub_download(repo_id=REPO_ID, filename=MoDEL_FILENAME)) scaler = joblib.load(hf_hub_download(repo_id=REPO_ID, filename=SCALER_FILENAME)) def encode_categorical_columns(df): label_encoder = LabelEncoder() ordinal_columns = df.select_dtypes(include=['object']).columns for col in ordinal_columns: df[col] = label_encoder.fit_transform(df[col]) nominal_columns = df.select_dtypes(include=['object']).columns.difference(ordinal_columns) df = pd.get_dummies(df, columns=nominal_columns, drop_first=True) return df # Define the prediction function def predict_performance(Location, College_Fee,College, GPA, Year, Course_Interested, Faculty, Source, Visited_College_for_Inquiry_Only, Event, Attended_Any_Events, Presenter, Visited_Parents): input_data = [[Location, College_Fee,College, GPA, Year, Course_Interested, Faculty, Source, Visited_College_for_Inquiry_Only, Event, Attended_Any_Events, Presenter, Visited_Parents]] feature_names = ["Location", "College Fee", "GPA", "Year", "Course Interested", "Faculty", "Source", "Visited College for Inquiry Only", "Event", "Attended Any Events", "College", "Presenter", "Visited Parents"] input_df = pd.DataFrame(input_data, columns=feature_names) # Debug print 2: Show DataFrame before encoding print("\nDataFrame before encoding:") print(input_df) df = encode_categorical_columns(input_df) # Debug print 3: Show DataFrame after encoding print("\nDataFrame after encoding:") print(df) # Ensure the DataFrame columns match the scaler's expected input df = df.reindex(columns=scaler.feature_names_in_, fill_value=0) scaled_input = scaler.transform(df) # Debug print 4: Show scaled input print("\nScaled input:") print(scaled_input) prediction = model.predict(scaled_input)[0] # Debug print 5: Show prediction details print("\nPrediction details:") print(f"Raw prediction: {prediction}") prediction_probability = 1 / (1 + np.exp(-prediction)) print(f"Probability: {prediction_probability}") prediction_percentage = prediction_probability * 100 print(f"Percentage: {prediction_percentage}") return f"Chance of Admission: {prediction_percentage:.1f}%" iface = gr.Interface( fn=predict_performance, inputs=[ gr.Radio(["Kathmandu", "Bhaktapur", "Lalitpur", "Kritipur"], label="Location"), gr.Slider(minimum=1000000, maximum=1700000, label="College Fee"), gr.Slider(minimum=2, maximum=3, label="GPA"), gr.Slider(minimum=2024, maximum=2030, step=1, label="Year"), gr.Radio(["MSc IT & Applied Security", "BSc (Hons) Computing", "BSc (Hons) Computing with Artificial Intelligence", "BSc (Hons) Computer Networking & IT Security", "BSc (Hons) Multimedia Technologies", "MBA", "BA (Hons) Accounting & Finance", "BA (Hons) Business Administration"], label="Course_Interested"), gr.Radio(["Science", "Management", "Humanities"], label="Faculty"), gr.Radio(["Event", "Facebook", "Instagram", "Offline", "Recommendation"], label="Source"), gr.Radio(["Yes", "No"], label="visited_college_for_inquery_only"), gr.Radio(["New Year", "Dashain", "Orientation", "Fresher's Party", "Holi Festival", "Welcome Ceremony"], label="attended_event_name"), gr.Radio(["Yes", "No"], label="attended_any_event"), gr.Radio(["Trinity", "CCRC", "KMC", "SOS", "ISMT", "St. Xavier's", "Everest", "Prime"], label="College"), gr.Radio(["Ram", "Gita", "Manish", "Shyam", "Raj", "Hari", "Rina", "Shree"], label="Presenter"), gr.Radio(["Yes", "No"], label="visited_with_parents") # Removed the incorrect list here ], outputs="text", title="chances of student admission", description="chances of student admission" ) # Run the app if __name__ == "__main__": iface.launch(share=True)