import os import requests import streamlit as st from langchain.callbacks.base import BaseCallbackHandler @st.cache_resource(ttl="1h") def upload_data(uploaded_files): files = {"file": uploaded_files} with st.spinner("Uploading PDF..."): response = requests.post( "http://127.0.0.1:8000/api/upload", files=files ) if response.status_code == 200: st.success( f'{response.json()["message"][0]} Vector Store created successfully!' ) st.session_state.uploaded_pdf = True else: st.error("Failed to upload PDF!") class StreamHandler(BaseCallbackHandler): def __init__( self, container: st.delta_generator.DeltaGenerator, initial_text: str = "" ): self.container = container self.text = initial_text self.run_id_ignore_token = None def on_llm_start(self, serialized: dict, prompts: list, **kwargs): # Workaround to prevent showing the rephrased question as output if prompts[0].startswith("Human"): self.run_id_ignore_token = kwargs.get("run_id") def on_llm_new_token(self, token: str, **kwargs) -> None: if self.run_id_ignore_token == kwargs.get("run_id", False): return self.text += token self.container.markdown(self.text) class PrintRetrievalHandler(BaseCallbackHandler): def __init__(self, container): self.status = container.status("**Context Retrieval**") def on_retriever_start(self, serialized: dict, query: str, **kwargs): self.status.write(f"**Question:** {query}") self.status.update(label=f"**Context Retrieval:** {query}") def on_retriever_end(self, documents, **kwargs): for idx, doc in enumerate(documents): source = os.path.basename(doc.metadata["source"]) self.status.write(f"**Document {idx} from {source}**") self.status.markdown(doc.page_content) self.status.update(state="complete")