import torch from transformers import AutoTokenizer from evo_model import EvoTransformerV22 from retriever import retrieve from websearch import web_search from openai import OpenAI import os # --- Load Evo Model --- device = torch.device("cuda" if torch.cuda.is_available() else "cpu") evo_model = EvoTransformerV22() evo_model.load_state_dict(torch.load("trained_model_evo_hellaswag.pt", map_location=device)) evo_model.to(device) evo_model.eval() # --- Load Tokenizer --- tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # --- EvoRAG+ with Rich Reasoning --- def evo_rag_response(query): # Step 1: Get context from RAG (doc) + web rag_context = retrieve(query) web_context = web_search(query) # Step 2: Combine for inference combined = query + "\n\n" + rag_context + "\n\n" + web_context inputs = tokenizer(combined, return_tensors="pt", truncation=True, padding="max_length", max_length=128) input_ids = inputs["input_ids"].to(device) # Step 3: Evo decision with torch.no_grad(): logits = evo_model(input_ids) pred = int(torch.sigmoid(logits).item() > 0.5) # Step 4: Extract Option Texts if available option_text = "" if "Option 1:" in query and "Option 2:" in query: try: opt1 = query.split("Option 1:")[1].split("Option 2:")[0].strip() opt2 = query.split("Option 2:")[1].strip() option_text = opt1 if pred == 0 else opt2 except: pass # Step 5: Format output output = f"🧠 Evo suggests: Option {pred + 1}" if option_text: output += f"\nāž”ļø {option_text}" output += "\n\nšŸ“Œ Reasoning:\n" if rag_context: first_line = rag_context.strip().splitlines()[0][:250] output += f"- {first_line}...\n" else: output += "- No document insight available.\n" output += "\nšŸ“‚ Context used:\n" + (rag_context[:400] if rag_context else "[None]") output += "\n\n🌐 Web insight:\n" + (web_context[:400] if web_context else "[None]") return output # --- GPT-3.5 (OpenAI >= 1.0.0) --- openai_api_key = os.environ.get("OPENAI_API_KEY", "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") # Replace or set via HF secrets client = OpenAI(api_key=openai_api_key) def get_gpt_response(query, context): try: prompt = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:" response = client.chat.completions.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": prompt}], temperature=0.3 ) return response.choices[0].message.content.strip() except Exception as e: return f"Error from GPT: {e}"