from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from transformers import pipeline import gradio as gr model_name = "Helsinki-NLP/opus-mt-en-zh" tokenizer = AutoTokenizer.from_pretrained(model_name) # model = AutoModelForSeq2SeqLM.from_pretrained(model_name) pipe = pipeline("translation", model=model_name, tokenizer=tokenizer) def getTranslateResult(inputTextValue): testRes = pipe(inputTextValue) return testRes[0]["translation_text"] with gr.Blocks() as translateDemo: with gr.Row(): with gr.Column(): inputText = gr.Textbox(label="Please enter the translation content, only Chinese is supported...") submitBtn = gr.Button(variant="primary", value="Submit") outText = gr.Textbox(label='Translation results are shown here...') inputText.submit( fn=getTranslateResult, inputs=inputText, outputs=outText ) submitBtn.click( fn=getTranslateResult, inputs=inputText, outputs=outText ) translateDemo.queue().launch()