import gradio as gr import pickle import numpy as np def make_prediction(placement, LargestTrait, MaxTraitCount, Itemcount, Fivecost, Fourcost, Threecost, Twocost, Onecost): with open("modelforweb.pkl", "rb") as f: clf = pickle.load(f) preds = clf.predict([[placement, LargestTrait, MaxTraitCount, Itemcount, Fivecost, Fourcost, Threecost, Twocost, Onecost]]) pred = np.round(preds) return pred #Create the input component for Gradio since we are expecting 4 inputs placement_input = gr.Number(label = "Enter your placement") LargestTrait_input = gr.Number(label= "Enter your largest active trait number") MaxTraitCount_input = gr.Number(label = "Enter your all active trait sum") Itemcount_input = gr.Number(label = "Enter your items number") Fivecost_input = gr.Number(label = "Enter your five cost champs number") Fourcost_input = gr.Number(label= "Enter your four cost champs number") Threecost_input = gr.Number(label = "Enter your three cost champs number") Twocost_input = gr.Number(label = "Enter your two cost champs number") Onecost_input = gr.Number(label = "Enter your one cost champs number") # We create the output output = gr.Number(label = "Predicted level") app = gr.Interface(fn = make_prediction, inputs=[placement_input, LargestTrait_input, MaxTraitCount_input, Itemcount_input, Fivecost_input, Fourcost_input, Threecost_input, Twocost_input, Onecost_input], outputs=output) app.launch()