Spaces:
Running
Running
File size: 15,620 Bytes
4bca48b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
import time
from typing import cast
from comfydeploy import ComfyDeploy
import os
import gradio as gr
from gradio.components.image_editor import EditorValue
from PIL import Image
import requests
import dotenv
from gradio_imageslider import ImageSlider
from io import BytesIO
import base64
import numpy as np
from loguru import logger
dotenv.load_dotenv()
API_KEY = os.environ.get("API_KEY")
CLEANER_DEPLOYMENT_ID = os.environ.get(
"CLEANER_DEPLOYMENT_ID", "CLEANER_DEPLOYMENT_ID_NOT_SET"
)
MASKER_DEPLOYMENT_ID = os.environ.get(
"MASKER_DEPLOYMENT_ID", "MASKER_DEPLOYMENT_ID_NOT_SET"
)
if not API_KEY:
raise ValueError("Please set API_KEY in your environment variables")
if (
not CLEANER_DEPLOYMENT_ID
or CLEANER_DEPLOYMENT_ID == "CLEANER_DEPLOYMENT_ID_NOT_SET"
):
raise ValueError("Please set CLEANER_DEPLOYMENT_ID in your environment variables")
client = ComfyDeploy(bearer_auth=API_KEY)
def get_base64_from_image(image: Image.Image) -> str:
buffered: BytesIO = BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def compute_mask(
image: Image.Image | str | None, progress: gr.Progress = gr.Progress()
) -> Image.Image | None:
progress(0, desc="Preparing inputs...")
if image is None:
return None
image = resize_image(image)
image_base64 = get_base64_from_image(image)
# Prepare inputs
inputs: dict = {
"input_image": f"data:image/png;base64,{image_base64}",
"dilation_1_iterations": 20,
"dilation_2_iterations": 30,
"mask_blur_amount": 215,
}
# Call ComfyDeploy API
try:
result = client.run.create(
request={"deployment_id": MASKER_DEPLOYMENT_ID, "inputs": inputs}
)
if result and result.object:
run_id: str = result.object.run_id
progress(0, desc="Starting processing...")
# Wait for the result
while True:
run_result = client.run.get(run_id=run_id)
if not run_result.object:
continue
progress_value = run_result.object.progress or 0
status = run_result.object.live_status or "Cold starting..."
progress(progress_value, desc=f"Status: {status}")
if run_result.object.status == "success":
for output in run_result.object.outputs or []:
if output.data and output.data.images:
image_url: str = output.data.images[0].url
# Download and return the mask image
response: requests.Response = requests.get(image_url)
mask_image: Image.Image = Image.open(
BytesIO(response.content)
)
return mask_image
return None
elif run_result.object.status == "failed":
logger.debug("Processing failed")
return None
time.sleep(1) # Wait for 1 second before checking the status again
except Exception as e:
logger.debug(f"Error: {e}")
return None
def create_editor_value(image: Image.Image, mask: Image.Image) -> EditorValue:
# Convert image to numpy array
image_np = np.array(image)
# Resize mask to match image dimensions
mask_resized = mask.resize((image_np.shape[1], image_np.shape[0]), Image.NEAREST)
mask_np = np.array(mask_resized)
# Ensure mask is grayscale
if len(mask_np.shape) == 3:
mask_np = mask_np[:, :, -1]
# Create the layers array
layers = np.zeros((image_np.shape[0], image_np.shape[1], 4), dtype=np.uint8)
layers[:, :, 3] = mask_np
# Create the composite image
composite = np.zeros((image_np.shape[0], image_np.shape[1], 4), dtype=np.uint8)
composite[:, :, :3] = image_np
composite[:, :, 3] = np.where(mask_np == 255, 0, 255)
return {
"background": image_np,
"layers": [layers],
"composite": composite,
}
def run_masking(
image: np.ndarray | Image.Image | str | None,
progress: gr.Progress = gr.Progress(),
profile: gr.OAuthProfile | None = None,
) -> EditorValue | None:
if image is None:
return None
if profile is None:
gr.Info("Please log in to process the image.")
return None
# Convert np.ndarray to Image.Image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
elif isinstance(image, str):
image = Image.open(image)
mask = compute_mask(image, progress)
if mask is None:
return None
# Use the new create_editor_value function
return create_editor_value(image, mask)
def remove_objects(
image: Image.Image | str | None,
mask: Image.Image | str | None,
user_data: dict,
progress: gr.Progress = gr.Progress(),
) -> Image.Image | None:
progress(0, desc="Preparing inputs...")
if image is None or mask is None:
return None
if isinstance(mask, str):
mask = Image.open(mask)
if isinstance(image, str):
image = Image.open(image)
image_base64 = get_base64_from_image(image)
mask_base64 = get_base64_from_image(mask)
# Prepare inputs
inputs: dict = {
"image": f"data:image/png;base64,{image_base64}",
"mask": f"data:image/png;base64,{mask_base64}",
# "run_metatada": str(
# {
# "source": "HF",
# "user": user_data,
# }
# ),
}
# Call ComfyDeploy API
try:
result = client.run.create(
request={"deployment_id": CLEANER_DEPLOYMENT_ID, "inputs": inputs}
)
if result and result.object:
run_id: str = result.object.run_id
progress(0, desc="Starting processing...")
# Wait for the result
while True:
run_result = client.run.get(run_id=run_id)
if not run_result.object:
continue
progress_value = (
run_result.object.progress
if run_result.object.progress is not None
else 0
)
status = (
run_result.object.live_status
if run_result.object.live_status is not None
else "Cold starting..."
)
progress(progress_value, desc=f"Status: {status}")
if run_result.object.status == "success":
for output in run_result.object.outputs or []:
if output.data and output.data.images:
image_url: str = output.data.images[0].url
# Download and return both the original and processed images
response: requests.Response = requests.get(image_url)
processed_image: Image.Image = Image.open(
BytesIO(response.content)
)
return processed_image
return None
elif run_result.object.status == "failed":
logger.debug("Processing failed")
return None
time.sleep(1) # Wait for 1 second before checking the status again
except Exception as e:
logger.debug(f"Error: {e}")
return None
def resize_image(img: Image.Image, min_side_length: int = 768) -> Image.Image:
if img.width <= min_side_length and img.height <= min_side_length:
return img
aspect_ratio = img.width / img.height
if img.width < img.height:
new_height = int(min_side_length / aspect_ratio)
return img.resize((min_side_length, new_height))
new_width = int(min_side_length * aspect_ratio)
return img.resize((new_width, min_side_length))
def get_profile(profile) -> dict:
return {
"username": profile.username,
"profile": profile.profile,
"name": profile.name,
}
async def run_removal(
image_and_mask: EditorValue | None,
progress: gr.Progress = gr.Progress(),
profile: gr.OAuthProfile | None = None,
) -> tuple[Image.Image, Image.Image] | None:
if not image_and_mask:
gr.Info("Please upload an image and draw a mask")
return None
if profile is None:
gr.Info("Please log in to process the image.")
return None
user_data = get_profile(profile)
logger.debug("--------- RUN ----------")
logger.debug(user_data)
logger.debug("--------- RUN ----------")
image_np = image_and_mask["background"]
image_np = cast(np.ndarray, image_np)
# If the image is empty, return None
if np.sum(image_np) == 0:
gr.Info("Please upload an image")
return None
alpha_channel = image_and_mask["layers"][0]
alpha_channel = cast(np.ndarray, alpha_channel)
mask_np = np.where(alpha_channel[:, :, 3] == 0, 0, 255).astype(np.uint8)
# if mask_np is empty, return None
if np.sum(mask_np) == 0:
gr.Info("Please mark the areas you want to remove")
return None
mask = Image.fromarray(mask_np)
mask = resize_image(mask)
image = Image.fromarray(image_np)
image = resize_image(image)
output = remove_objects(
image, # type: ignore
mask, # type: ignore
user_data,
progress,
)
if output is None:
gr.Info("Processing failed")
return None
progress(100, desc="Processing completed")
return image, output
with gr.Blocks() as demo:
gr.HTML("""
<div style="display: flex; justify-content: center; text-align:center; flex-direction: column;">
<h1 style="color: #333;">🧹 Room Cleaner</h1>
<div style="max-width: 800px; margin: 0 auto;">
<p style="font-size: 16px;">Upload an image and use the pencil tool (✏️ icon at the bottom) to <b>mark the areas you want to remove</b>.</p>
<p style="font-size: 16px;">
For best results, include the shadows and reflections of the objects you want to remove.
You can remove multiple objects at once.
If you forget to mask some parts of your object, it's likely that the model will reconstruct them.
</p>
<br>
<video width="640" height="360" controls style="margin: 0 auto; border-radius: 10px;">
<source src="https://dropshare.blanchon.xyz/public/dropshare/room_cleaner_demo.mp4" type="video/mp4">
</video>
<br>
<p style="font-size: 16px;">Finally, click on the <b>"Run"</b> button to process the image.</p>
<p style="font-size: 16px;">Wait for the processing to complete and compare the original and processed images using the slider.</p>
<p style="font-size: 16px;">⚠️ Note that the images are compressed to reduce the workloads of the demo. </p>
</div>
<div style="margin-top: 20px; display: flex; justify-content: center; gap: 10px;">
<a href="https://x.com/JulienBlanchon">
<img src="https://img.shields.io/badge/X-%23000000.svg?style=for-the-badge&logo=X&logoColor=white" alt="X Badge" style="border-radius: 3px;"/>
</a>
<a href="https://x.com/jeremie_feron">
<img src="https://img.shields.io/badge/X-%23000000.svg?style=for-the-badge&logo=X&logoColor=white" alt="X Badge" style="border-radius: 3px;"/>
</a>
</div>
</div>
""")
login_button = gr.LoginButton(scale=8)
# ------ MASKING
with gr.Column():
with gr.Row(equal_height=False):
# The image overflow, fix
input_image = gr.Image(
label="Input Image",
height="full",
width="full",
)
gr.HTML("""
<h3 style="text-align: center;">Step 1: input image</h3>
<p style="text-align: center;">Upload an image of the room you want to clean.</p>
""")
with gr.Row(equal_height=False):
image_and_mask_auto = gr.ImageMask(
label="Image and Mask",
layers=False,
show_fullscreen_button=False,
sources=["upload"],
show_download_button=False,
interactive=True,
height="full",
width="full",
brush=gr.Brush(default_size=75, colors=["#000000"], color_mode="fixed"),
transforms=[],
)
with gr.Column():
gr.HTML("""
<h3 style="text-align: center;">Step 2: Run masking</h3>
<p style="text-align: center;">Click get mask to get automatic masking and edit it after manually if needed.</p>
""")
compute_mask_btn = gr.ClearButton(
value="Get mask",
variant="primary",
size="lg",
components=[image_and_mask_auto],
)
compute_mask_btn.click(
fn=lambda _: gr.update(interactive=False, value="Processing..."),
inputs=[],
outputs=[compute_mask_btn],
api_name=False,
).then(
fn=run_masking,
inputs=[
input_image,
],
outputs=[image_and_mask_auto],
api_name=False,
).then(
fn=lambda _: gr.update(interactive=True, value="Get mask"),
inputs=[],
outputs=[compute_mask_btn],
api_name=False,
)
# ------ REMOVAL
with gr.Row(equal_height=False):
image_slider = ImageSlider(
label="Result",
interactive=False,
)
with gr.Column():
gr.HTML("""
<h3 style="text-align: center;">Step 3: Run removal</h3>
<p style="text-align: center;">Click run to remove the objects from the image.</p>
""")
process_btn = gr.ClearButton(
value="Run",
variant="primary",
size="lg",
components=[image_slider],
)
process_btn.click(
fn=lambda _: gr.update(interactive=False, value="Processing..."),
inputs=[],
outputs=[process_btn],
api_name=False,
).then(
fn=run_removal,
inputs=[
image_and_mask_auto,
],
outputs=[image_slider],
api_name=False,
).then(
fn=lambda _: gr.update(interactive=True, value="Run"),
inputs=[],
outputs=[process_btn],
api_name=False,
)
if __name__ == "__main__":
demo.launch(
debug=False,
share=False,
show_api=False,
)
|